Universitat
Bremen

BETTER EARLY THAN NEVER:
ForMAL AND PracTICAL TECHNIQUES FOR THE COMPLEX
SysTEM DESIGN PROCESS USING VIRTUAL PROTOTYPES

Dissertation
zur Erlangung des Grades eines Doktors
der Ingenieurwissenschaften
—Dr. Ing. -

von

Pascal Pieper

- Digitalversion —

Vorgelegt im Fachbereich 3
(Mathematik und Informatik)
der Universitdt Bremen
im April 2023

— This page is intentionally left blank —

Acknowledgements

I would like to thank my supervisor Prof. Dr. Rolf Drechsler
for creating a great atmosphere in which my scientific
endeavours could be supported with an invigorating
freedom and without whom this dissertation would not have
been possible.

I also would like to thank all my current and former
colleagues at AGRA/DFK]I; in particular Dr. Viadimir Herdt
for guiding me into self-sufficiency; as well as Christina Plump,
Niklas Bruns, Soren Tempel, Sallar Ahmadi-Pour, and
Dr. Fritjof Bornebusch (in no particular order) for inspiring,
scientific, and not-so-scientific talks.

Furthermore, I thank Prof. Dr. Daniel Grofle for inviting me
into the AGRA, and Dr. Ralf Wimmer for supporting me with
our publication and their tool NIView™.

Lastly, an honorable mention goes to the WMF 52000s coffee
machine in the Teekiiche that makes neither great nor terrible
coffee if mixed with enough milk.

Pascal Pieper

Bremen, April 2023

— This page is intentionally left blank —

Abstract

Modern System-on-Chip (SoC) designs are produced in increasingly faster
project cycle times, while their complexity rises together with the need of a
continuously decreasing cost. To cope with this high demand and pressure on
a manufacturer’s ability to maintain a reliable and secure end-product, Virtual
Prototype (VP) based design processes are gaining popularity in the industry. A
VP creates the possibility to design, evaluate, and verify an executable prototype
of the system in an early design stage by modeling the future hardware on a
behavioral or structural level. In contrast to more traditional design flows like
hardware-then-software, this enables both the iterative design evaluation and a
parallel development of the (actual) hardware and software early in the product
conception phase. Additionally, after development of the lower level hardware
stages (e. g. on register transfer level, gate level, or physical hardware), VPs can be
used as golden reference models with test and verification methods for comparison
between the system level behavior and the actual hardware. For this to work,
however, the VP and its components need to be verified in the first place.

In this thesis, several techniques are proposed to improve and strengthen the
VP-based design process for embedded systems, covering modeling and verifi-
cation of System-on-Chip scaled hardware models, as well as novel debugging,
analysis, and educational tools. The main goal of this thesis is to both improve
existing processes and create novel approaches for the early design of complex

embedded systems on the architectural and behavioral level.

“To err is human, but to really foul things up you need a computer.”
— Paul R. Ehrlich

Contents

1 Introduction
1.1 Design Flow with Virtual Prototypes
1.2 Thesis Contribution
1.3 Thesis Organization

2 Preliminaries
2.1 Embedded Devices
22 SystemC/TLM
2.3 RISC-V Instruction Set Architecture

3 Hardware and Environment Modeling
3.1 RISC-V based Virtual Prototype: An Extensible and Configurable
Platform for the System-level
3.1.1 Introduction
312 RelatedWork
3.1.3 Preliminaries
3.1.3.1 RISC-V: Atomic Instruction Set Extension
3.1.4 RISC-V based VP Architecture
3.141 RV32/64 (Multi-)Core
3142 TLM-20Bus.
3143 TrapsandInterrupts
3144 SystemCalls.
3.1.45 VP Initialization
3146 TimingModel
3.1.5 VP Interaction with SW and Environment
3.1.5.1 Interrupt Handling and HW/SW Interaction
3.1.5.2 Environment Interaction: Syscall Emulation and
C/C++Library
3.1.6 VP Performance Optimizations

14
15
19
21

23

3.2

3.3

3.1.7

3.1.8

3.1.9

3.1.6.1 Direct Memory Interface (DMI)
3.1.6.2 LocalTimeQuanta
Simulation of Multi-Core Platforms
3.1.7.1 Example Bare-Metal Multi-Core SW
3.1.7.2 Implementation of the Atomic ISA Extension . . .
VP Extension and Configuration
3.1.8.1 Extending the VP with a Sensor Peripheral
3.1.8.2 SW Debugging Support Extension
3.1.8.3 HiFivel Board Configuration
VP Evaluation
3191 Testing,
3.1.9.2 Performance Evaluation

3.1.10 Discussion and Future Work
3111 Conclusion oo
Virtual Breadboard - Advanced Environment Modeling GUI

321
322
3.2.3
324

3.2.5

3.2.6

3.2.7
3.2.8

Introduction
Related Work
Embedded Systems: Components and Interfaces
VP-driven Environment Modeling
3.24.1 Architecture Overview
3.24.2 VP Peripheral Interfaces
3.24.3 SystemC Peripheral Interface
3244 GPIO-Protocol
3.245 VP EnvironmentModel
3246 DragandDrop
Rapid Prototyping using Lua Scripting
3251 Configuration,
3252 Scopinglayers
3253 ExampleDevices
Evaluation
3.2.6.1 Modeling Case-Studies
3.2.6.2 Performance Evaluation
3.2.6.3 Educational Tool for Teaching
Discussion and Future Work
Conclusion

Minimally Invasive SW/HW Co-debug Live Visualization on Archi-
tectureLevel Lo o

3.3.1
3.3.2
3.33
3.34

Introduction
Related Work
Preliminaries
Implementation
3.34.1 Symbolsand Connections
3.3.4.2 Visualization Interface

ii

34

3.35

3.3.6

3343 DebuggingGUI
CaseStudy
3351 DisplayHWModel
3352 DisplaySWDriver
3353 Debugging.
3354 Evaluation
Conclusion and Future Work

Hardware-In-The-Loop Framework to Bridge the VP/RTL Design-

Gap
3.4.1
3.4.2
343

344

34.5
3.4.6

Introduction
Related Work
Approach Overview
3431 Protocol
3.432 DPeripheral Bridge
3.43.3 FPGA Implementation
Evaluation / Case-Study
3441 GPIOBank
3.4.4.2 GPIOBit-Banging SPT
3443 GCDCalculation
3444 SynthesisResults
Discussion e
Conclusion and Future Work

4 Verification
4.1 Veritying SystemC TLM Peripherals using Modern C++ Symbolic
ExecutionTools,

4.2

411
41.2
41.3
414

4.1.5

4.1.6

Introduction
Related Work
Preliminaries-PLIC
TLM Peripheral Verification via Symbolic Execution

4141 Overview
41.4.2 Thread to Function Translation
4143 PeripheralKernel
4144 Symbolic Execution.
Experiments,
4151 Testso
4152 Test Results: Original PLIC
4153 Test Results: PLIC with Injected Faults
4154 Test Appendix: Simple Sensor Peripheral
Conclusion e

Towards Cross-Level Equivalence Testing of Peripherals using Sym-
bolic Execution Tools

421

Introduction

iii

100
101
103
105
108
110
111
112
113
114

116

119
119
120
122
123
123
125
126
127
128
129
130
133
135
137

138
138

42.2 RTL Peripheral Verification via Symbolic Execution 139
4221 PeripheralKernel 140
423 ExperimentalSetup, . 142
424 Conclusionand Future Work 143
4.3 Dynamic Information Flow Tracking for Early Security Policy Vali-
dation e 144
431 Introduction 144
432 RelatedWork. 145
4.3.3 Preliminaries: Security Policies and Threat Model 146
43.3.1 Security Policy 146
43.3.2 Declassification 148
4333 ThreatModel 149
43.4 DIFT for Embedded Binaries using VPs 149
4341 ApproachOverview 149
4342 DIFTEngine. 150
4343 ExecutionClearance 155
4344 Example Scenario: System Description and Secu-
rityPolicy 158
4.3.4.5 Branches with Confidential Conditions. 160
435 SystemC TLM-2.0 Compatible Tainting Engine for Virtual
Prototypes 160
43.6 Experimental Evaluation 162
4.3.6.1 Security Policy Evaluation: Car Engine Immobilizer 162
43.6.2 Code Injection Protection 163
4.3.6.3 Performance Overhead Evaluation 164
43.7 Conclusionand Future Work 165
5 Conclusion 167
Acronyms 173
List of Figures 178
List of Tables 182

iv

Chapter 1

Introduction

In computer science, the steadily increasing gap between the technological possi-
bilities and the ability to design such systems is referred to as the design gap [1-
3]. With the ever-growing number of transistors in Integrated Circuits (ICs),
this trend is expected to increase even further as predicted by “Moore’s Law”.
While this growing trend gave way to an unprecedented life-style with millions of
devices working in the background, ranging from simple Internet of Things (IoI’)
devices, through System-on-Chips (SoCs) in smartphones, Electronical Control
Units (ECUs) in cars or airplanes, or up to high-end processors in server farms;
managing this complexity has become the main factor in advancing the state-of-
the-art or even in meeting tight time-to-market and cost requirements.

Most of these SoCs are made up of individual units that would make up a
whole desktop computer of the 90s: A Central Processing Unit (CPU) (or multiple
heterogeneous CPUs) with caches and different memories, a Graphics Processing
Unit (GPU) for driving 3D graphics, cryptography-, vector-, neural net-, and many
more accelerators, wireless functionality, analog domains, and so on.

All of these units are condensed in a package that fits on a thumb with
incredible speed and power efficiency, and with features that a human eye can
no longer see because normal light can not resolve these; no single individual
can manufacture (or even completely understand!) ICs alone without the help
of Electronic Design Automation (EDA) tools. Moreover, the actual behavior of
these systems also depends on many abstraction layers of software (SW) stacks
from drivers to high-level user applications.

One of the many tools at the system designer’s disposal is virtual prototyping [4,
5], which nowadays is widely used in the industry. A Virtual Prototype (VP)
is an executable SW model of some physical hardware (HW) and opens up the
opportunity to explore the implications of design choices (called design space explo-
ration) as early as possible [6], without the slow and expensive need to implement
such HW in full detail first. Furthermore, in case of the model being a processor,

1

CHAPTER 1. INTRODUCTION

it allows SW to be developed and run on the virtual HW early on. Nowadays,
for the development of digital systems, SystemC emerged as the go-to option for
rapid, HW-centric prototyping due to its flexibility in level of abstraction against
simulation speed [7, 8] (see also Section 2.2). As SystemC is a modeling language
on top of C++, it allows SW developers to interact, inspect and even create the HW
models they use, with full control over the (virtual) HW using SW debugging and
analysis tools, which is still a promising field of research.

VPs allow for an increase in development speed, but the combination of SW
and HW in embedded systems requires not only a verified functionality, but also
an increasing level of security as the ubiquitousness and mass production by
increasingly smaller design teams lift every small error to a huge attack vector and
thus impose a multitude of risks.

Behavioral Structural
Systems @ ® CPU, Memory
Algorithms @ ® Subsystems, Buses
Register-transfer @ ® ALUs, Registers
Logic @ ® Gates, Flipflops

Transfer functions @ ® Transistors

Polygons
Cells
Macros, Floor Plans

Clusters

Chips, Physical Partitions

Geometry

Figure 1.1: Abstraction levels addressed in this dissertation highlighted in green.
Gajski-Kuhn Y-Model, redrawn, from [9].

HW is usually modeled in different abstraction levels of the three main factors
behavior, structure, and geometry (see Figure 1.1). The behavioral system level is
where functions of unit groups behave as if they were already complete, without
regard on how the function is actually implemented or how the individual units
communicate. With the focus on VPs, which can be used early in the behavioral
system level abstraction, the abstractions usually range from Transaction Level
Modeling (TLM), where communication between units “just happens” (see Chap-
ter 2, Figure 2.2), to the Register Transfer Layer (RTL), where even the task of

2

CHAPTER 1. INTRODUCTION

passing information between units needs to be synchronized and orchestrated.
These abstractions enable the simultaneous development of SW drivers while the
actual HW is not even finished yet; benchmarking attributes like run-time, power
consumption or memory resources on varying levels of accuracy with the trade-
off on simulation speed continuously along the growing detail of the model during
development.

Without such knowledge, a design team has to estimate these trade-offs by
either prior knowledge from other projects or by actually spinning up the whole
chip fabrication process. This can only be done at great cost both in terms of
money and time, however. While this situation somewhat relaxed by the use of
Field-Programmable Gate Arrays (FPGAs), especially in the application specific
embedded systems area, there is still a considerable workload with time, cost, flexi-
bility, and power demands fixed that needs to be addressed in the design phase.
This system design is complex on multiple different abstraction layers in the actual
word sense of being hard to control and predict; in contrast to being complicated,
which still may not be easy but ultimately knowable. As an example; one of the
common design questions that need to be decided as early as possible in complex
system design can be whether a certain functionality should be designed in HW
or SW. This is called Hardware/Software Partitioning [10] and carries a number
of known or unknown trade-offs, as there is not the one SW or HW layer (cf.
Figures 1.2 and 2.1). Mainly flexibility, re-usability of designs, and a fast idea-to-
MVP (Minimum Viable Product) time are additionally shared, secondary goals to
being able to design the system in the first place.

Figure 1.2 shows the flexibility of change against the expected execution speed
of a certain functionality as one of the considerations to make. The flexibility to
change a certain aspect of a designed system is important and heavily dependent
on the use-case. This is also related to the level of detail needed in the underlying
simulation for a functionality to be properly tested and verified (cf. Figure 1.1). It
starts with easy-to-change user scripts that may control high-level behavior. Script-
ing may be used, e.g., in smart home assistant automation with an interpreted
language such as Python or Lua, where the execution speed is comparatively slow,
but the code may be changed even in running systems. Scripts can also be used
and tested on simple mock-up systems running on a desktop computer. Broadly
speaking, this level applies mainly to tasks orchestrating underlying systems,
modeling the overall behavior, and modifying high level process parameters. Less
flexible, and usually implemented in faster high-level languages, are the Operating
System (OS), system-specific tasks, and drivers for the underlying HW. This
level also applies to calculation-intensive tasks and libraries that provide a set of
primary functions. Functions like OSes and low-level drivers already need more
sophisticated simulation systems such as virtual machines or even system-level

3

CHAPTER 1. INTRODUCTION

User Scripts

>

; OS/Drivers
)]

Firmware

paads uoilndax3
Axs|dwo)

Flexibility
Development speed

<

ASIC

Figure 1.2: Possible SW/HW layers where a given functionality can be imple-
mented, with the trade-off between flexibility and execution speed.

VPs, as they can be just enough detailed to run as fast as possible. The lowest SW
level is represented by the machine-native firmware (sometimes called bare-metal),
which ranges from early system-setup code to instruction sequences / microcode
images for controllable on-chip devices. Here, the usable resources are limited, as
the firmware usually contains early start-up code where devices such as Dynamic
Random Access Memory (DRAM) can not yet be used, as they are being initialized
only during this run-time. The firmware is tightly coupled to the underlying HW,
which needs to be simulated in more detail than just the common virtualization
techniques for test and verification, with more focus on the interaction with the
SoC’s on- and off-chip peripheral devices. Here, system- or algorithm-level VPs
are well-suited for an accurate test and verification simulation (which is the focus
of this work), while still being comparatively fast.

Entering the HW domain, FPGAs are a way of spinning up small-volume HW
implementations. These can be changed multiple times, but only once the HW
model is completely designed. The execution speed depends on the workload, but
usually is in the hundreds of megahertz range and used for specific, highly parallel
tasks or early HW validation. In contrast, the complete test and verification of
such designs requires a lot of computing power for simulation while still being
slow. Finally, the highest speed and lowest flexibility offer Application-specific
Integrated Circuits (ASICs). The time to production ranges from several months

4

CHAPTER 1. INTRODUCTION

to years to a usable chip, but once finished, may implement whole SoCs clocking on
the gigahertz to terahertz range. Here, simulating or verifying the whole system or
even sub-systems remains a huge challenge even for the largest companies. This
figure can thus also be read as development speed (left) vs. verification effort /
complexity (right).

Concluding, the HW/SW partitioning question involves a lot of architectural
assumptions like the processor type, interface styles, and memory structure to
name a few [11]. All of this makes VPs essential for successful designs, as these
architecture characteristics can be modeled fast and to the desired accuracy of the
advancing process phases.

Stepping into more details of the actual system design, embedded systems are
mostly heterogeneous systems, tailored to a very special set of tasks. One of the
most far-reaching design decisions is the Instruction Set Architecture (ISA) of the
processor; as this defines power consumption, available HW modules (so called
Interlectual Properties (IPs)), area, available SW (driver, operating systems, li-
braries), and lastly, licensing costs. Traditionally, the choice was effectively limited
to an x86 CISC' or ARM RISC processor model [13] [14, 15]. If the design company
was too small or the chip was targeted to a lowest-cost scenario, the only resort
were some niche MIPS? processors. In the last years, however, a new movement
arose: RISC-V [16-18], first introduced in 2019, is a freely available and highly
modifiable RISC ISA that is being adopted widely, even in big companies [19, 20],
for its flexibility and license-free nature (see also Section 2.3). Thus, VPs and
other Instruction Set Simulators (ISSs) implementing this ISA can be published
and extended with liberal and free licenses.

In the context of this dissertation, RISC-V is mainly used as a case-study to
showcase the developed techniques while maintaining a real-world context that
benefits an active community shaped by academia and industry alike.

LCISC/RISC: Complex/Reduced Instruction Set Computer. See also Section 2.3 and [12].
ZMIPS: Microprocessor without Interlocked Pipelined Stages.

5

CHAPTER 1. INTRODUCTION

1.1 Design Flow with Virtual Prototypes

The main benefit of virtual prototyping is the parallelism in developing software
and HW simultaneously, essentially cutting the development time in half [21].
Following Figure 1.3, there previously were three mainly sequential design phases:

Applications

Software
Verification...?

c
o

=
©
o
o
o
=
c

Testing

Testling on
Hardware
—_—)

Hardware I

— - Meets Design
(Hardware Verification

Kriteria?
Rollback!

Testbench
Creation
—_—

Development Time

Figure 1.3: Traditional SW-then-HW design flow. Notice the possible design
rollback due to the missing design space exploration.

The Specification phase (in red), the HW design phase (in yellow), and finally
the Software design phase (in blue). So, after a certain specification had been
made, the HW had to be modeled to a near complete level to 1) verify the system
for conformity to the specification, and 2) evaluate this specification whether it
meets the design requirements at all (e.g. execution speed, power consumption,
accuracy, chip area, overall cost, etc.).

Not only did this cause a huge time overhead in development; possible de-
sign specification misjudgments in terms of incorrect assumptions or changed
requirements could only be detected or corrected far into the design process, which
requires critical rollbacks or re-designs. Furthermore, special care had to be taken
in design specification to maintain a high level of security in the IoT, as embedded
systems are both very critical and very susceptible to security and safety issues,
as they usually do not offer risk-mitigating features commonly found in desktop-
grade environments such as memory space partitioning, address layout random-
ization, or memory virtualization techniques in user / supervisor / hypervisor
modes [22, 23]. These projects thus heavily depended on either luck no error
occurred, or on so-called “rock-star developers”. These are individuals that exceed
the norm, handle complex problems exceptionally well, and are far less susceptible
to errors, enabling projects to overcome the baseline hurdles and pitfalls mentioned
earlier. While certainly some star projects succeeded, this dependence makes the

6

CHAPTER 1. INTRODUCTION

traditional approach unreliable which is thus unsuitable for modern, complex
projects, where anybody might start developing systems that once were feasible
only for the biggest of companies. This SW-after-HW approach also allows for
verification gaps in the HW/SW interaction layer, which are traditionally only
correctable by developing a one-time-use system level model which also needs
to be verified against the specification to have any meaningful statement. This
adds complexity and misses a lot of re-usable verification chances such as Software
Driven Verification (SDV) [8] or Cross-Level Verification (CLV) that re-use the

previously one-time-used intermediate model as a golden reference model.

While virtual prototyping recently grew as an option to the industry, the mod-
eling and verification of such systems is mostly still a manual, and thus error-
prone, process. Due to the effort of industry towards maintaining their IPs secret,
every new competitor or private individual has to start from the ground up. This
slows down the overall innovation rate and reduces the average quality of products.
Thus, there is the need for stable, open-source RISC-V VPs that everyone can use,
modify, and build upon (as can be observed with recently founded companies like
MachineWare [24]). Also, for VPs to become a trustworthy source of “correctness”,
verification must not be an afterthought, but rather a constant part of an agile
design process. Public incidents, ranging from privacy-related inconveniences [25]
to the loss of human lives [26] show the necessity of improving the quality of
embedded systems in general and Iol' devices specifically. This level of quality
is currently especially hard to achieve for smaller companies that do not have
a big verification division because of the missing availability and cumbersome

application of existing tools.

As such, there is a strong demand of accessible system level design automation
tools [27] and agile chip development [28]. In fact, the automation part is what
is most important: The best verification tools are meaningless if they are too
cumbersome to use or do not map to reality. Also, in the real world without rock-
star developers and ever faster product cycles, it is likely that a necessary re-spin
of the design process is just not carried out if the errors are found too late, leaving

known design or implementation flaws open to save money or time.

7

CHAPTER 1. INTRODUCTION

To sum up, the following problems in the traditional design flow can be
identified:

Long development time with HW-then-SW flow

Inefficient design space exploration encouraging design rollbacks

Too little re-use of intermediate models

Missing early system analysis tools that would improve design understand-
ing
High verification hurdle causing insufficient product quality

Applications

Continuous VeriﬁcationJ A A
— 1 1
(®)] [1 1
g_g + 2 + cl 1
o= 1 = 1 ol 1
[y} = 1 1 il | 0
ST 521 ED T 1 Vg
c©o 0L .= S5 |_I
= 1B o
w= Sm 1 N 1 %E 1 cli
S&1 e 25 | S
ol
1
Re-use o
Qi
Design Space Exploration N E).S <|)§- Cgi EE
A \\%\ E= 53 =g c |
1 T O | = I
> o E 0 N3 SgEl 82| sEr &l
2 1 i \>x =0T e el 1
= I) WO, IS0 o = 1
& cl = v OS> Tc n> 1
o - b9 v v
) g | T-5
= E(Ul C-I—l . o .
é '*EEI ,UE —| Continuous Verification I—
= ~E
g1 2& £3% Hardware
v °-

Development Time

Figure 1.4: Overview of the proposed design flow for fast and agile development
of embedded systems.

The modern system design flow proposed in this thesis tackles these problems
in an agile way: It is a VP-centric approach that starts with a highly abstracted
VP that is developed closely along the specification using advanced modeling
approaches. This enables an early design space exploration (fail early, fail cheap;
cf. [29]) required for complex projects, allowing the SW to be developed simulta-
neously and thus to be a part of the evaluation process.

8

CHAPTER 1. INTRODUCTION

Figure 1.4 depicts this advanced design flow. The main work packages are,
again, separated into Specification (in red), Software (in blue), and Hardware (in
yellow); but with the additional Virtual Prototype package in green in between.
Processes marked with a circle ((®) are presented in-depth in this thesis, while
grey dashed arrows indicate techniques that are important to the proposed design
flow but are referenced in related work.

In this proposed advanced design flow, the development of a VP can start
alongside the specification phase, synchronous to the abstraction level. This initial
system level prototype bring-up is enabled by using the RISC-V VP (@, Section 3.1).
The RISC-V VP also enables the complete exploration of the design space, as initial
SW development can already start for low-level drivers and firmware. Highly
secure system designs are additionally improved by using the early security pol-
icy evaluation (@, Section 4.3) to analyze and adapt security policies and their
teasibility for the given tasks. Along with other criteria that can be estimated with
VPs (e. g. runtime, power consumption, complexity), virtual prototyping enables a
fast-paced, agile way of exploring requirements in the specification. This, however,
is only possible if SW can be brought up fast, too: HW/SW co-design and -debug
tools like advanced off-chip environment modeling (@, Section 3.2) and peripheral
state visualization (@, Section 3.3) allow the SW-developers to quickly build the
firmware from drivers up to the operating system (cf. Figure 1.2).

Decoupled from the development state of the software, during the completion
of the specification phase, the conformity of a VP can continuously be verified using
SW development tools and techniques (&, Section 4.1) and the security policy
evaluation approach @.

After the VP has been verified thoroughly and thus achieved a certain quality,
the HW development can start. Here, one of the benefits of SystemC stand out: A
subset of SystemC is synthesizable to Hardware Description Languages (HDLs)
(see also Section 2.2), so depending on the abstraction level of the SystemC VP,
HW-modules may either directly be synthesized or at least interpreted in a way
that is native to the HW developer [8]. As the VP is verified thoroughly, it can
continuously be used as a (behavioral) golden reference model for cross level
verification for the HW models down to the Register Transfer Layer (RTL) layer,
securing a high quality and shorter time spent in functional verification. The most
important techniques in this phase are early Transaction Level Modeling (TLM)-
translated cross level verification (©®, [30, 31] and Section 4.2) and Hardware-in-
the-Loop (HWITL) processes (@, Section 3.4), where HW developers can focus
on developing the unique selling point devices first, alongside the parallel SW
development and the corresponding specialized verification tools (e.g. [32-35]).

On the SW work package, this modern, VP-centric approach also allows the
SW to be developed while continuously being verified on and against the VP using

9

CHAPTER 1. INTRODUCTION

different testing and verification approaches that specifically require VPs as their
basis [32, 36, 37]. In summary, the main benefit of the proposed design flow for
fast and agile development of embedded systems are:

e Early and advanced design space exploration and thus less probable project

rollbacks (©, @, ®)

Increased re-use rate of existing designs (®, ©, @)

Faster product cycles and thus time-to-market (D, ®)

Better design understanding and debugging capabilities (©, ®, @)

Improved handling of complex full-stack systems (@ to @)

Trusted systems with multi-stage verification in different abstraction levels

(®,6,®)

10

CHAPTER 1. INTRODUCTION

1.2 Thesis Contribution

The contributions of this thesis can be summarized in two main areas: Modeling

and Verification of embedded systems using Virtual Prototypes.

By extending and implementing an advanced RISC-V VP (©, [38]), capable
of running multiple operating systems including Linux, and an environment
modeling system (@, [39, 40]) for live interaction to and from simulated off-chip
devices, a strong foundation could be laid out for further tools and techniques.
Especially the RISC-V VP, as it was released as an open source project, fueled
academic interest and was cited, to date of this publication, at least 50 times by
peer-reviewed papers. This includes comparison papers where the RISC-V VP
was deemed the best modeling tool for SoCs with its good timing vs. performance
balance and small modeling effort [41]. Both modeling tools of the approaches
are actively used in educational lectures of domestic and international universi-
ties, which was captured by a course study [42]. Also, both contributions are
recognized well in academia with [38] being regularly presented at workshops
and conferences (lastly the Latch-Up 2023 in Santa Barbara), and with [40] being
mentioned in first place of the Chip Industry’s Technical Paper Roundup: October
2022 in the Semiconductor Engineering news-group [43] as well as being featured
online on the Journal of Low Power Electronics and Applications (JLPEA) front page.
Also based on the combination of the RISC-V VP and the environment modeling
system, the visualization and HW/SW co-debugging tool (®), [44]) offers a strong

introspective for design understanding and analysis.

In the verification area, two main VP-based applications could be contributed:
A Dynamic Information Flow Tracking-powered approach (@, [45]) for early
design space exploration and verification of system-level security policies of the
full HW/SW stack, and the verification of SystemC TLM peripherals using sym-
bolic execution techniques (®, [46]). Also, this thesis’ topic was presented and
discussed in the DAC22 and is admitted at the Design, Automation & Test in Europe
(DATE) 23 conference as part of their respective PhD-Fora.

To increase adoption of the modern design process, all tools of the scientific
contributions mentioned in this thesis (except for [44] due to licensing reasons)
have been made publicly available as open-source projects to stimulate further
research and broaden the RISC-V community [47-51].

11

CHAPTER 1. INTRODUCTION

In summary, this thesis features the following peer-reviewed publications of
the author:

1.

[45] Pascal Pieper, Vladimir Herdt, Daniel Grofe, and Rolf Drechsler (2020).
Dynamic Information Flow Tracking for Embedded Binaries using
SystemC-based Virtual Prototypes. In 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC) (pp. 1-6).

[38] Vladimir Herdt, Daniel Grofie, Pascal Pieper, and Rolf Drechsler (2020).
RISC-V based virtual prototype: An extensible and configurable platform for
the system-level. In Journal of Systems Architecture (JSA) (pp. 109).

[44] Pascal Pieper, Ralf Wimmer, Gerhard Angst, and Rolf Drechsler (2021).
Minimally Invasive HW/SW Co-Debug Live Visualization on Architecture
Level. In Proceedings of the 2021 on Great Lakes Symposium on VLSI (GLSVLSI)
(pp. 321-326). ACM.

[39] Pascal Pieper, Vladimir Herdt, and Rolf Drechsler (2022).

Advanced Environment Modeling and Interaction in an Open Source RISC-V
Virtual Prototype. In Proceedings of the Great Lakes Symposium on VLSI
(GLSVLSI) 2022 (pp. 193-197). ACM.

[46] Pascal Pieper, Vladimir Herdt, and Rolf Drechsler (2022).

Verifying SystemC TLM Peripherals using Modern C++ Symbolic Execution
Tools. In 2022 59th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6).
[40] Pascal Pieper, Vladimir Herdt, and Rolf Drechsler (2022).

Advanced Embedded System Modeling and Simulation in an Open Source
RISC-V Virtual Prototype. In Journal of Low Power Electronics and Applications
(JLPEA).

[52] Pascal Pieper, Sallar Ahmadi-Pour, and Rolf Drechsler (2023).
Virtual-Peripheral-in-the-Loop: A Hardware-in-the-loop Strategy to Bridge
the VP/RTL Design-Gap. Under review for the Proceedings of Inter-
national Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS).

12

CHAPTER 1. INTRODUCTION

1.3 Thesis Organization

The following chapters present the approaches mentioned in the advanced design
flow and experimental results: First Chapter 2 is an overview over the most
common background knowledge necessary to understand this thesis, such as the
structure of embedded devices, the RISC-V standards, and SystemC / TLM. In
the following central Chapters 3 and 4, the two main cornerstones of this thesis’
contribution are explained in full detail: System modeling and SW/HW co-design
(Sections 3.1 to 3.4), and the verification of such systems, with a focus on the SoC’s
peripherals (Sections 4.1 and 4.2) and security policies conformity using dynamic
information flow tracking (Section 4.3). Lastly, the conclusion and possible future
research directions are discussed in Chapter 5.

The assignment of peer reviewed papers to the individual sections are as
follows:

e Chapter 3: System Modeling with VPs

— Section 3.1: SoC Modeling - [38]

— Section 3.2: Off-Chip Modeling - [39, 40]

— Section 3.3: SW/HW Co-Debugging - [44]

— Section 3.4: RTL development speedup with HWITL - [52]
(under review)

e Chapter 4: Verification with VPs

— Section 4.1: TLM Peripheral Verification - [46]
— Section 4.2: TLM/RTL Cross-Level Peripheral Verification

— Section 4.3: Security Policy Verification using Dynamic Information
Flow Tracking - [45]

13

Chapter 2
Preliminaries

This section gives an overview over the common topics the following work builds
upon, to keep this thesis self-contained. Individual, per-chapter specific topics
(such as security lattices, Section 4.3) will however be introduced in their respec-
tive subsections.

As the proposed advanced design flow is focused on embedded devices (rang-
ing from simple micro-controllers to huge SoCs), the concept of embedded devices
and how they are usually laid out is explained first. The development of such
devices is nowadays aided with VPs, so the status quo of virtual prototyping with
a focus on modeling with SystemC and TLM in particular is explained, and the
trade-off between simulation accuracy and execution speed is introduced. Lastly,
a summary and the rationale of the RISC-V ISA and its ecosystem, which is used
as a functional case study in this thesis, are outlined.

14

CHAPTER 2. PRELIMINARIES

2.1 Embedded Devices

Embedded devices are usually a combination of computer hardware and software,
and perhaps additional mechanical or other parts, designed to perform a dedicated
function [53, 54]. They range from the simplest 4-bit devices such as melody-
playing greeting-cards to highly sophisticated control systems in airplanes or high-
throughput Digital Signal Processors (DSPs) in wireless access points for cell-
phone networks. Their key common property is that they are purpose-built for
very specific tasks. Due to their nature, they often work at an interplay between
HW and SW, creating the term firmware for the programming that drives these
systems. This firmware might often be left unchanged for years without end
or reboot, managing single or multiple tasks with sometimes mixed real-time
requirements.

()

\—/

(User Applications

SW (Libraries J(os)

(Drivers, HAL)
A I 4
MMIO CSR ITR
v v !
(Registers)(Signals)
On Chip
(State Machine (Behavior))
A A A A
HW —— UART Analog SPI 12C
v v v v
Qi 2 (Actuators) (Sensors) (H|DSJ
L _J

Figure 2.1: Behavior model of an embedded device in the scope of this thesis. It
consists of three layers: The software stack (binary running on a chip, in blue), the
on-chip peripherals (hardware functionality, in green), and off-chip devices that
are part of the deployed system (orange).

15

CHAPTER 2. PRELIMINARIES

A simplified view on a general embedded system is given in Figure 2.1. The
boundaries between software (blue), on-chip hardware (green) and off-chip hard-
ware (red) are blurred, as the communication channels and functionalities are not
well-defined to reside on one side or the other.

Starting with the SW, the highest abstraction layer is usually the user applica-
tions. Here, the term user refers to the engineers that develop the actual mission-
related tasks, in contrast to the lower layers that focus on housekeeping, managing
the device-specific hardware and enabling the execution of these tasks in the first
place. Libraries, Drivers, the (optional) OS, and potential Hardware Abstraction
Layers (HALs) usually interface with the HW in multiple ways. Besides the
processor specific (or extended) ISA (see Section 2.3) and their defined Control
and Status Registers (CSRs), control over the hardware will usually be exercised
in von Neumann architectures by memory-mapped I/O, while interrupts / traps
close the control loop back to the software. Interrupts and traps offer a way for
the HW to signal readiness of new data or required attention from the SW in
general, while memory-mapped I/O offers means of reading and writing data to
and from on-chip hardware peripherals via a bus-like shared connection. This data
may be interpreted as commands, payload, or whatever else, thus creating a very
flexible and cheap interface method. Please note that, while isolated 1/O schemes
exist, they come with several drawbacks. These drawbacks include the need for
dedicated read/write assembler commands and irregular microarchitectures, and
are thus not part of modern RISC ISAs like RISC-V. On this level, the ISA can be
seen as the “contract” between the SW and HW defining the interface, and the
microarchitecture as the actual CPU implementation with its own trade-offs and
costs. On SW side, these accesses are simply read or write instructions to certain
addresses, as if they were contained in memory. The actual data/instruction
memory in this case may just be one of many peripheral bus participants, albeit
an important one.

The on-chip peripherals are then usually ranging from simple devices such
as the General Purpose Input/Output (GPIO)-system, over Analog-to-Digital
Converter (ADC) /Digital-to-Analog Converter (DAC) modules or digital protocol
links such as Universal Asynchronous Receiver / Transmitter (UART), to state-
machine controlled hardware-accelerators and Direct Memory Access (DMA)
controllers. Especially in this domain, the complexity against speed or other trade-
offs have a big impact on decisions where a certain workload will be implemented
in, or the next bottleneck will reside.

At the other end, embedded systems are usually not just one chip device, but
form a network between high- and low-level control loops, sensors, and actuators.
In the following, a small outline of the protocols and devices mostly used in

16

CHAPTER 2. PRELIMINARIES

the case-studies is presented. The list is backed by [53, 54] and is by no means
exhaustive.

UART Universal Asynchronous Receiver / Transmitter is, as the name implies,
a serial asynchronous protocol that transmits simplex and unclocked bytes. De-
pending on the actual configuration, it most often comes in the configuration 8-
bit, single stop bit, no parity in baud-rates from 9600 to 115200 symbols per second,
with dedicated receive and transmit lines. It is usually used to transmit/receive
text-based commands or raw bytes in a custom, higher level protocol like talking
to a modem or an In-System Programmer (ISP).

SPI The Serial Peripheral Interface is a high-speed, clocked protocol with dedi-
cated receive and transmit connections (Master-In-Slave-Out (MISO), and Master-
Out-Slave-In (MOSI)), along with a Chip Select (CS) line. It is intended to be used
in a one-to-many connection from a session-initiating host, and mostly used for
either extended program memory (e. g. SPI-Flash) or interface with high-data-rate
sensors. Readyness/Attention of clients is usually indicated by a separate interrupt

pin.

I>’C Inter-Integrated Circuit, or sometimes twowire, is a serial protocol with the
key feature of requiring only one, duplex, data line and a clock line. It is usually
used for sensors and smaller actuators such as power distribution devices on main-
boards in a bus-like configuration. The devices share the same connections and
are addressed using, usually, 7 bit identification numbers, followed by a variable
number of data bits that can be interpreted as an in-device register address or
actual payload data. Every transaction is either acknowledged or dismissed by
a following bit from the target device.

PWM Pulse Width Modulation is a common technique to emulate analog signals
on average on digital lines. Especially Metal-Oxide Semiconductor Field-Effect
Transistors (MOSFETs), used as output drivers of a chip’s GPIO pins, can deliver
a comparatively high current only when they are fully turned on. To still drive in-
between values for, e. g., motor drivers or Light Emitting Diode (LED) dimming,
the output pin can be rapidly turned on and off. The ratio between on- and off-
time is called duty-cycle and defines the averaged analog output value. Usual
frequencies are in the kilohertz range where a human eye can not perceive the
individual on- and off-cycles, or the inertia of a physical motor filters the pulses.

17

CHAPTER 2. PRELIMINARIES

LED Light Emitting Diodes are semiconductors that use differently doped sil-
icon to stimulate electrons of a certain energy to emit light in a corresponding
wavelength. The energy (and thus, color) depends on the band-gap between
the two semiconductors, which nowadays ranges from infra-red to ultra-violet.
This process is, compared to incandescent light bulbs, very efficient. LEDs are
non-Ohmic conductors and need a separate current limiter when driven with a
voltage source. Due to a mostly very narrow operating voltage range, dimming (i. e.
limiting output power) is mostly done via PWM which also increases the efficiency
compared to actual current controlling circuits.

PCB Printed Circuit Boards are connection boards that host electrical devices
like chips, transistors, passive components, and other components categorized
as through-hole- and surface-mounted devices. Nearly every electrical device
consists of one or multiple PCBs, acting as the foundation of all components. PCBs
consist of copper on passive media like FR4, a flame retardant epoxy resin and
glass fabric composite. This is layered (usually ranging from 1 to 10 layers), as
the copper is systematically etched away to only remain in previously specified
locations, building up the connections. After etching, the layers are glued together,
drilled, and connected with so-called vias. Finally, the components can be soldered
on to the PCB.

18

CHAPTER 2. PRELIMINARIES

2.2 SystemC / TLM

SystemC [4] is an industry-proven modeling standard to model digital sys-
tems [55], especially VPs [56]. It is not a new language however, it rather is a C++
class library which includes an event-driven simulation kernel [4, 57]. The main
benefit of SystemC is the flexible trade-off between timing accuracy and simulation
time, operating from abstract TLM down to the RTL. This support for multiple
abstraction levels enables developers to refine the design and even re-use the model
to verify the final hardware [58, 59].

The structure of a SystemC design is described with ports and modules,
whereas the behavior is modeled in processes which are triggered by events. The
execution of a process is non-preemptive, i. e. the kernel receives the control back
if the process has finished its execution or suspends itself by calling wait() .
SystemC provides three types of processes with SC_THREAD being the most general
type, i.e. the other two can be modeled by using SC_THREAD. For event-based
synchronization, SystemC offers many variants of wait () and notify() such as
wait(time), wait(event), event.notify(delay), event.notify(), etc. The
most prominent implementation of SystemC, the Accellera™ SystemC library [60],
features a user-space scheduler instead of using the Operating System’s scheduling
to increase the speed of frequent context-switches at the cost of a complex code
base. For every execution step, it jumps to the time of the next active event(s).
It will then execute all waiting threads or methods that are “sensitive” to these
events in an unspecific order. If other events were notified during this time-step,
they are also executed in zero time, i. e. without advancing the simulation time. If
all communications are settled, the simulation jumps to the next time where time-
sensitive events are waiting.

Communication between SystemC modules is abstracted using TLM trans-
actions at the cost of timing accuracy, but with significant improvements in
simulation speed. Compared to RTL simulations, the execution is usually faster
by a factor of 1000 (although retaining cycle-accuracy is possible [61]). A TLM
transaction object essentially consists of a command (e. g. read /write) and the data
(payload) to be transmitted. Transactions are routed based on their address from
an initiator to a target socket which is all defined in the SystemC TLM-2.0 standard
and allow very fast interactions between modules. Optionally, a transaction can
be associated with a delay (modeled as sc_time data structure), which denotes
the execution time of the transaction and allows to obtain a more accurate overall
simulation time estimation. Furthermore, those TLM transactions can be used with
blocking and non-blocking communication mechanisms (see Figure 2.2), in Loosely
Timed (LT) and Approximately Timed (AT) coding styles. In the LT coding style,
communication is done by temporal decoupling of accesses between models, i.e.

19

CHAPTER 2. PRELIMINARIES

Use cases

Software Software Architectural Hardware
development performance analysis verification

\ 4 \ 4 \ 4

Coding Styles, Abstractions

Loosely-timed
Approximately-timed

\ 4

Mechanisms

.Blockmg DMI § Quantum | Sockets Generic Extensions | Phases Nqn-blocklng
interface payload interface

Figure 2.2: Classification of degrees of SystemC timing accuracy [4]. From left to
right the models gain timing accuracy with a decreasing execution speed.

possibly finishing the transmission “in the future”. These transactions can either
read or write at a specified target socket, carrying a generic payload along with
a cumulative delay, and may return success or error status values. This delay is
increased by every model passing the transaction and added to a global quantum
afterward. The global quantum tracks the time difference a transaction “jumped”
in contrast to the actual simulated time. If this difference is bigger than a certain
maximum allowed time, the SystemC kernel will initiate a global synchronization.
This allows for a fine control over the trade-off between simulation speed and
accuracy in LT mode.

The non-blocking interface (in AT models) however consists of a number
of (user-defined) phases, in where the progress of the communication through
individual transmissions need to be handled by the respective models. This
also needs to be synchronized with time and added status information, down
to the accuracy of RTL models; which in turn heavily decreases the simulation’s
performance.

20

CHAPTER 2. PRELIMINARIES

2.3 RISC-V Instruction Set Architecture

RISC-V is an open and free Instruction Set Architecture. It was started in 2014 as a
purely academic project and gained traction in the last years; mainly because of its
extensibility and lack of licensing fees. With the benefit of no need of backwards-
compatibility, a completely new and modern ISA could be developed, reaching or
outperforming existing ISAs while being more efficient in general [62]. A particu-
larly interesting choice was to simplify the microarchitecture by moving a part of
the complexity to the compilers — a traditional RISC-approach. This idea played
out well, as nowadays next to no-one needs to write whole programs in assembly
languages, shifting the trend more to high-level (compiled) languages. This factor,
together with increasing computational power in general, enables processors both
in the highly specific low-power / embedded domain and the high-power server
market to have a common base ISA. Obviously, though, the set of features differ
enormously between the two poles. This is where the extensibility shines: There is
a shared base instruction set, but for everything else there is is an ever-growing
set of standardized and intentionally left out (user-) Instruction- and Control
and Status Register extensions (see Table 2.1). This drew attention especially
from the machine learning industries, as there existed a need to incorporate, e. g.,
neural-net and cryptography accelerators neatly and efficiently into their SoCs [63].
Nowadays, with the huge ecosystem that has evolved around RISC-V, it also lets
companies focus on their main selling-point (such as HW accelerators), without
having to reinvent the metaphorical wheel again in the form of instruction set cores
and infrastructural and SW components.

The base ISA consists of a mandatory base integer instruction set (denoted
RV32I, RV641I or RV128I with corresponding register widths) and various optional
extensions denoted as single letters, e. g. M (integer multiplication and division), C
(compressed instructions), etc. Thus, RV32IMAC denotes a 32 bit core with M, A and
C extension. The base instruction set is very compact, RV32I consists of 47 instruc-
tions and, for example, the M extension adds additional 8 instructions. The second
volume of the RISC-V ISA defines privileged architecture description [17]. The
RISC-V ISA also defines CSRs, which are registers serving a special purpose. For
example the mtvec (Machine Trap-Vector Base-Address) CSR stores the address of
the trap/interrupt handler.

Furthermore, the RISC-V ISA provides a small set of instructions for interrupt
handling (wfi, mret) and interacting with the system environment (ecall).
For a comprehensive description of the RISC-V ISA, please refer to the official
specifications [16, 17]. All RV32IMA instructions have a 32 bit width and use at
most two source and one destination register. The C extension adds 16 bit encoding

21

CHAPTER 2. PRELIMINARIES

for common operations (saving encoding space by, e.g., grouping source and
destination register), which can be expanded into an existing 32 bit I instruction.

Abbreviation Version Status Description

RVWMO 2.0 Ratified Weak memory ordering model

RV32I 21 Ratified Integer base instructions 32-bit

RVe64l 21 Ratified Integer base instructions 64-bit

RV32E 2.0 Ratified Reduced base instructions 32-bit

RV64E 2.0 Ratified Reduced base instructions 64-bit

RV1281 1.7 Draft Integer base instructions 128-bit

M 2.0 Ratified Multiplication / division instructions

A 21 Ratified Atomic operations

F 2.2 Ratified Single-precision floating-point instructions
D 2.2 Ratified Double-precision floating-point instructions
Q 2.2 Ratified Quad-precision floating-point instructions
C 2.0 Ratified Compressed instructions

Counters 2.0 Draft ~ Performance counter CSRs

L 0.0 Draft ~ Decimal floating point instructions

p 0.2 Draft ~ Packed Vector instructions

Vv 0.7 Draft Vector instructions

Zicsr 2.0 Ratified Control and Status Registers

Zifencei 2.0 Ratified Synchronization between instruction fetches
Zihintpause 2.0 Ratified Hint for low-power operations

Zam 0.1 Draft ~ Allows misaligned atomics in A

Zfh 1.0 Ratified Half-precision floating-point operations
Zfhmin 1.0 Ratified Minimal subset of Zfh

Zmmul 1.0 Ratified Multiplication-only instructions in M

Ztso 1.0 Ratified Total Store Ordering for memory model

Table 2.1: Excerpt of current (as of June 2023) ratified or soon-to-be ratified
extensions of the RISC-V ISA, extended, from [16]. The top lines are Base instruc-
tions where at least one instance needs to be implemented, while the lower ISA
definitions are optional Extensions.

22

Chapter 3

Hardware and Environment Modeling

The ubiquity of IoT devices opens a new world of possibilities for both personal and
industrial applications. The key idea of the IoT is to have a multitude of tiny and
low power sensors and actuators connected in big, distributed wireless networks.
All of these devices are heavily specialized and, for this idea to be feasible, need
all of their on- and off-chip components to be as cheap as possible. Hence, as an
open and free instruction set architecture, RISC-V is gaining huge popularity for
IoT. As stated in Section 2.3, RISC-V is a modern ISA that, with its open nature and
a combination of a clean and modular design, has enormous potential to become
a game changer in the IoT era. It is to no surprise that a large ecosystem is already
available around RISC-V, including various RTL implementations at one end and
high-speed ISSs at the other end. These implementations can, as always, be
categorized in the execution speed against accuracy and development time trade-
offs. Among the fastest implementations of RISC-V interpreters, besides actual
FPGA /ASIC implementations, are Instruction Set Simulators like [64] (fast execu-
tion speed) or [65] (fast development time of the ISS, early adoption). These focus
only on the execution of RISC-V assembler instructions, with either none or only
highly abstracted peripheral devices for the sake of execution speed and simplicity.
Because of this, ISSs are usually used either for ISA design space exploration or
testing of high-level SW (e.g. operating systems). The ISSs, when executed on
powerful host machines, sometimes achieve 1:1 performance (simulation time vs.
wall-clock time) or better. However, being predominantly designed for speed,
they can hardly be extended to support further Electronic System Level (ESL) use
cases such as power/timing/performance validation, analysis of complex HW/SW
interactions, or analysis and simulation of off-chip devices [66]. On the lowest
level, HDLs models on the RTL like the Berkeley out-of-order machine [67],
can be simulated in the magnitude of ten to a hundred thousand seconds per
second simulation time at the benefit of cycle-time accuracy. This simulation

23

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

necessitates, of course, a fully developed system with a detailed microarchitecture
and peripherals, which is too late in the design process of complex systems.

Virtual Prototypes are designed to fill this niche in-between: At execution
speeds next to real-time and hundreds of seconds per second of simulation time,
they enable the design team to continuously adapt the executable model to the
current project scope from a high-level behavioral system level down to the RTL.

This chapter presents a number of hardware modeling approaches; starting
from the developed RISC-V VP, over an Environment Model GUI simulating
off-chip devices and protocols virtually connected to the RISC-V VP, debugging
and visualization techniques for on-chip peripherals with RISCview, to finally a
hardware-in-the-loop system for virtually connecting RTL peripherals on FPGAs
to the RISC-V VP.

Firstly, in Section 3.1, a RISC-V based VP is proposed and implemented with
the goal of filling this gap between early system design and fully finished system,
presented in an extended version of the original publication [38]. It provides a
32- and 64-bit RISC-V core supporting the IMACFD instruction sets with different
privilege levels, the RISC-V Core-Local Interruptor (CLINT) and Platform Level
Interrupt Controller (PLIC) interrupt controllers and an essential set of peripherals.
The simulation of (mixed 32 and 64 bit) multi-core platforms is supported, and SW
debug and coverage measurement capabilities are provided, along with support
for the FreeRTOS [68], Zephyr [69], RIOT [70], and Linux operating systems.
The VP is designed as extensible and configurable platform with a generic bus
system and implemented in standard-compliant SystemC and TLM-2.0. The latter
point is very important, since it allows leveraging cutting-edge SystemC-based
modeling techniques needed for the mentioned use cases. The RISC-V VP allows
a significantly faster simulation compared to RTL, while being more accurate
than existing ISSs. Finally, the RISC-V VP is fully open source (MIT license)
to help expanding the RISC-V ecosystem and stimulating further research and
development.

In the following Section 3.2, an Environment Model GUI is presented to
broaden the application domain for virtual prototyping in the RISC-V context in
form of an extended version of the original publications [39, 40]. It builds upon the
previously presented RISC-V VP and adds a standalone Graphical User Interface
(GUI) for visualization purposes of the environment using the Qt C++ library
which communicates to the VP through a Transmission Control Protocol (TCP)
connection. Additionally, appropriate libraries were designed to offer hardware
communication interfaces such as GPIO and SPI from the VP to an interactive
environment model. The approach is generally designed to be integrated with VPs
thatleverage a TLM communication system to prefer a speed optimized simulation.
To show the practicability of an environment model, a set of building blocks

24

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

such as buttons, LEDs and Organic Light Emitting Diode (OLED) displays are
provided, including configurations for two demonstration environments. More-
over, for rapid prototyping purposes, another modeling layer is provided that
leverages the dynamic Lua scripting language to design components and integrate
them faster and more easily with the VP-based simulation. Lastly, an evaluation
with two different case-studies is given that demonstrates the applicability of the
approach in building virtual environments effectively and correctly in matching
the real physical systems. To advance the RISC-V community and stimulate further
research, the extended VP platform is provided along with the environment
configurations and visualization toolbox and the case studies on GitHub [48].

Next up, Section 3.3 extends the previously presented RISC-V VP with an easily
configurable graphical debugging tool called RISCview, as published in [44]. It
features a GUI that allows developers to debug hard- and software and their
interaction in an early design stage, aided by the standard software debugger.
The GUI visualizes the internal state of the hardware, rendered automatically
using the industrial-strength drawing engine Nlview™ [71]. The schematics are
annotated with live simulation data, i. e. the current values of signals, busses, and
registers while executing software instructions. These annotations can include
internal values that are not accessible from the hardware’s interface via software
instructions, but are still necessary for understanding and debugging the system’s
state. At the same time, the software debugger monitors and allows to manipulate
the state of the software. This co-visualization supports design understanding and
live debugging of the HW/SW interaction. The usefulness is demonstrated with
a case-study where an OLED display driver is debugged while running on the
RISC-V VP.

Finally, Section 3.4 presents a method to close the TLM/RTL gap by bridging
memory-mapped peripherals between a SoC-like VP and RTL models on FPGAs.
While virtual prototyping lessens the design-gap and improves the verification
abilities of the SoC design process, there exists another gap, as the step from an
architectural level VP implementation on the TLM to the RTL implementation is
considerably big.

Especially when a company wants to focus on their Unique Selling-Point (USP),
the HW Design Space Exploration (DSE) and acceptance tests should start as early
as possible. Traditionally, this can only start once the (minimum) rest of the SoC
is also implemented in the RTL. As SoCs consist of many common subsystems
like processors, memories, and peripherals, this may impact the time-to-market
considerably. This is avoidable, however: This section proposes a Hardware-in-the-
Loop strategy called Virtual Peripheral in-the-Loop (VPIL) that allows to bridge
the gap between VP and RTL designs that empowers engineers to focus on their
USP while leveraging an existing suite of TLM IPs for the common base-system

25

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

components. It is shown how VPs and partial RTL implementations of a SoC can
be combined in a HWITL simulation environment utilizing FPGAs. The proposed
approach allows early DSE, validation, and verification of SoC sub-components,
which bridges the TLM/RTL gap. The approach is evaluated with a lightweight
implementation of the proposed protocol, and three case-studies with real-world
peripherals and accelerators on HW. Furthermore, the capabilities of the approach
are assessed and practical considerations for engineers are offered, to utilizing this
HWITL approach for SoC design. Finally, further extensions are proposed that can
boost the approach for specialized applications like high-performance accelerators
and computation.

26

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.1 RISC-V based Virtual Prototype: An Extensible
and Configurable Platform for the System-level

This section includes and extends published material from a previous conference
paper [72] and the following journal extension [38]. After a motivation in Sub-
section 3.1.1 and a discussion of related work in Subsection 3.1.2, Subsection 3.1.3
reviews essential background information on RISC-V instructions and architecture,
as well as a more specific dive into the SystemC TLM bus architecture. Next,
an overview of the VP architecture is given in Subsection 3.1.4. Then, in Subsec-
tion 3.1.5, the VP interaction with the SW and environment, by means of interrupts
and syscalls (system calls), is presented in more detail. Subsection 3.1.6 shows
and explains performance optimizations, and Subsection 3.1.7 describes the exten-
sion to simulate multi-core platforms. In Subsection 3.1.8, additional examples
are provided that further demonstrate the configurability and extensibility of
the RISC-V VP. The quality, applicability and performance of the RISC-V VP is
evaluated in Subsection 3.1.9. Finally, Subsection 3.1.10 provides a discussion of
future work and Subsection 3.1.11 concludes this section.

3.1.1 Introduction

Enormous innovations are enabled by the IoI-market since every device is con-
nected to the Internet. Forecasts see additional economic impact resulting from
industrial IoT. In the last years, the complexity of IoI' devices has been increasing
steadily with various conflicting requirements. On the one hand, IoI devices need
to provide smart functions with a high performance including real-time computing
capabilities, connectivity and remote access as well as safety, security and high
reliability. At the same time they have to be cheap, work efficiently with an
extremely small amount of memory and limited resources and should further
consume only a minimal amount of power to ensure a very long runtime.

To meet the requirements of a specific Iol' system, a crucial component is the
processor. Stimulated from the enormous momentum of open source software, a
counterpart on the hardware side recently emerged: RISC-V [16, 17]. As stated
in Section 2.3, RISC-V is an open-source ISA which is license-free and royalty-
free. The ISA standard is maintained by the non-profit RISC-V foundation and
is appropriate for all levels of computing systems, i.e. from microcontrollers to
supercomputers. The RISC-V ecosystem is rapidly growing, ranging from HW,
e. g. various HW implementations (free as well as commercial) to high-speed ISSs.
These ISSs facilitate functional verification of RTL implementations as well as early
SW development to some extent. However, being designed predominantly for

27

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

speed, they can hardly be extended to support further system-level use cases such
as design space exploration, power/timing/performance validation or analysis of
complex HW/SW interactions.

A major industry-proven approach to deal with these use cases in earlier phases
of the design flow is to employ VPs [73] at the abstraction of ESL [66]. In indus-
trial practice, the standardized C++-based modeling language SystemC and TLM
techniques [4, 74] are being heavily used together to create VPs. Depending on
the specific use case, advanced state-of-the-art SystemC-based techniques beyond
functional modeling (see e.g. [75-79]) are to be applied on top of the basic VPs.
The much earlier availability as well as the significantly faster simulation speed in
comparison to RTL are among the main benefits of SystemC-based VPs.

In this section, a RISC-V based VP is proposed and implemented to further
expand and bring the benefits of VPs to the RISC-V ecosystem. With the goal of
filling the mentioned gap in supporting further system-level use cases, SystemC is
necessarily the language of choice. The VP is therefore implemented in standard-
compliant SystemC and TLM-2.0 and designed as extensible and configurable
platform with a generic bus system. The RISC-V VP provides a 32 and 64 bit
RISC-V core supporting the IMACFD instruction set with different privilege lev-
els, the RISC-V CLINT and PLIC interrupt controllers and an essential set of
peripherals. Furthermore, it supports the simulation of (mixed 32 and 64 bit)
multi-core platforms, provides SW debug and coverage measurement capabilities
and supports a number of operating systems (e. g. FreeRTOS, Zephyr, RIOT, and
Linux) operating systems. This section further demonstrates the extensibility
and configurability of the RISC-V VP by three examples: addition of a sensor
peripheral, describing the integration of the GNU Project debugger (GDB) SW
debug extension, and configuration to match the RISC-V HiFivel board from SiFive.
The evaluation section demonstrates the quality and applicability of the RISC-V VP
to real-world embedded applications and shows the high simulation performance
of the RISC-V VP. As always, the RISC-V VP is made fully open source on
GitHub [49] (MIT license) to stimulate further research and development.

3.1.2 Related Work

As mentioned earlier, the RISC-V ecosystem already has various high-speed ISSs
such as the reference simulator SPIKE [65], RISCV-QEMU [64], RV8 [80] or
DBT-RISE [81]. They are mainly designed to simulate as fast as possible and
predominantly employ dynamic binary translation (to x86_64) techniques. This
is however a trade-off as accurately modeling power or timing information for
instructions becomes much more challenging.

The full-system simulator gemb5 [82], also has initial support for RISC-V. gem5

28

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

provides more detailed models of processors and memories and can in principle
also be extended for accurate modeling of extra-functional properties. Renode [83]
is another full-system simulator with RISC-V support. Renode puts a particular
focus on modeling and debugging multi-node networks of embedded systems.
However, both gem5 and Renode employ a different modeling style and thus
hinder the integration of advanced SystemC-based techniques.

FORVIS [84] and GRIFT [85] are Haskell-based implementations that aim to
provide an executable formalization of the RISC-V ISA to be used as foundation for
several (formal) analysis techniques. SAIL-RISCV [86] aims to be another RISC-V
formalization that is implemented in Sail, which is a special language for describing
ISAs with support for generation of simulator backends (in C and OCaml) as well
as theorem-prover definitions.

The project SoCRocket [87] that develops an open-source SystemC-based VP
for the SPARC V8 architecture, can be considered comparable to this proposed VP.

Finally, commercial VP tools such as Synopsys Virtualizer or Mentor Vista
might also support RISC-V , but their implementation is proprietary.

The RISC-V VP is implemented in standard compliant SystemC TLM-2.0,
which is an industry-proven modeling standard (IEEE-1666 [4]), and published as
open-source to extend the RISC-V ecosystem and lay the foundation for advanced
SystemC-based system-level use cases for RISC-V.

3.1.3 Preliminaries
3.1.3.1 RISC-V: Atomic Instruction Set Extension

The RISC-V Atomic instruction set extension enables implementation of synchro-
nization primitives between multiple RISC-V cores. It provides two types of atomic
instructions:

1) A set of amo instructions. For example, amoadd.w loads a word X from
memory, performs an addition to X and stores the result back into the same
memory location. Furthermore, X is also stored in the destination register RD of the
amo instruction. The load and store operation of the amo instructions are executed
atomically, i. e. they are not interrupted by other memory access operations from
other cores.

2) The 1r (Load Reservation) / sc (Store Conditional) instructions. 1r
loads a word from memory and places a reservation on the load address. The
reservation size must at least include the size of the memory access. sc stores
a result to memory. sc succeeds if a reservation exists on the store address and
no other operation has invalidated the reservation, e.g. a store on the reserved
address range. Otherwise, sc fails with an exception, which in turn triggers a

29

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

trap. A sequence of corresponding 1r /sc instruction should satisfy the RISC-V
“forward-progress” property, i. e. essentially, contain no more than 16 simple integer
instructions (i. e. no loads, stores, jumps or system calls) between the 1r and sc
pair.

3.1.4 RISC-V based VP Architecture

The VP is implemented in SystemC and designed as extensible and configurable
platform around a RISC-V RV32/64IMACFD (multi-)core with a generic bus system
employing TLM-2.0 communication and support for the GNU toolchain with the
SW coverage measurement tool Gnu Coverage Tool (GCOV) and debug capabili-
ties via GDB. Overall, the VP consists of around 12 000 lines of C++ code with all
extensions. Figure 3.1 shows an overview of the VP architecture. This is described
in the following subsections in more detail.

CLINT and PLIC support multi—corelsystem
RV32/64IMAC+SUN CLINT PLIC-based e
Syscall |f_| ISS (Timer and SW Int.) Interrupt Controller
[Memory Interface T 9

Syscall
Handler TLM 2.0 | Address mapping (start,end)BI

C/C++
Optional Libraries / OS: Program

C/C++

Standard Library GNU
y Toolchain

FreeRTOS / Zephyr 3 (Cross-)Compile

Operating System and Link Q Bus for each attached component
Other RISC-V | mapping, e.g.: (start=0x0,
Libraries \ 4 end=0x2000000)
" Executable

A
»

(Main) DMA Other Peripherals
RISC-V ELF (Binary) Memory Controller (UART, GPIO, etc)

Load into Memory , TY—m— I
1 Virtual Prototype (VP) Architecture

Legend: ——> TLM 2.0 Transaction = ——» Interrupt Notification = ——> Internal Syscall Interface ——> Use / Input

Figure 3.1: RISC-V VP architecture overview.

3.1.4.1 RV32/64 (Multi-)Core

The CPU core loads, decodes and executes one instruction after another. RISC-V
compressed instructions are expanded on the fly into regular instructions in a
pre-processing step before being passed to the normal execution unit. A 32-bit
and 64-bit core is provided, supporting the RISC-V RV32IMACFD and RV64IMACFD
instruction sets, respectively. Besides the mandatory Machine mode, each core
implements the RISC-V Supervisor and User mode privilege levels and provides
support for user mode interrupt and trap handling (N extension). This includes the
CSRs for the corresponding privilege levels (as specified in the RISC-V privileged
architecture specification [17]) as well as instructions for interrupt handling (wfi,
m/s/uret) and environment interaction (ecall, ebreak). More details on the

30

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

implementation of interrupt handling and system calls (environment interaction)
follow in the coming subsections.

Multiple RISC-V cores can be integrated to build a multi-core platform (see
upper middle of Figure 3.1). It is also possible to mix 32 and 64 bit cores. The
Atomic extension provides instructions to enable synchronization of the cores.
Each core is attached to the bus through a memory interface. Essentially, the
memory interface translates load/store requests into TLM transactions and ensures
that the atomic instructions are handled correctly. More details on simulation of
multi-core platforms will be provided in Subsection 3.1.7.

3.14.2 TLM-2.0 Bus

The TLM bus is responsible on routing transactions from an initiator, i.e. a bus
master, to a target. Therefore, all target components are attached to the TLM
bus at specific non-overlapping address ranges (cf. right side of Figure 3.1). The
bus mapping will match the transaction address with the address ranges and
dispatch the transaction accordingly to the matching target. Please note that in
this process the bus performs a global-to-local address translation in the transac-
tion. For example, assume that a sensor component is mapped to the address
range (start=0x50000000, end=0x50001000) and the transaction address is
0x50000010. This instructs the bus to 1) route the transaction to the sensor, and 2)
translate the transaction address to 0x00000010 before passing it on to the sensor.
Thus, the sensor works on its local address range without the need for knowing its
position in the global address space.

Also, the TLM bus supports multiple masters initiating transactions. Currently,
the CPU core as well as the DMA controller are configured as bus masters. Please
note that a single component can be both master and target, as for example the
DMA controller receives transactions initiated by the CPU core to configure source
and destination address ranges, and is also able to initiate transactions by itself to
perform memory access operations without the CPU core.

3.1.4.3 Traps and Interrupts

Both traps and interrupts result in the CPU core performing a context switch to the
trap/interrupt handler (based on a SW configurable address stored in the mtvec
CSR). Traps are raised to perform a system call or when an execution exception,
e. g. invalid memory access, is encountered.

Two sources of interrupts are available: 1) local and 2) external. Essentially,
there are two sources of local interrupts: SW as well as timer interrupts generated
by the RISC-V specific CLINT (Core Local INTerruptor). The timer is part of

31

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

the CLINT and the interrupt frequency can be configured for each core through
memory-mapped I/O. CLINT also provides a memory-mapped register for each
core to trigger a SW interrupt for the corresponding core. External interrupts
are all remaining interrupts triggered by the various components in the system.
To handle external interrupts, it is neccessar provide the RISC-V specific PLIC
(Platform Level Interrupt Controller). PLIC will collect and prioritize all external
interrupts and then route them to each CPU core one by one. The core that claims
the interrupt first will process it. CLINT and PLIC are shown on the upper right
part of Figure 3.1. According to the RISC-V specification, external interrupts are
processed with higher priority than local interrupts, and SW interrupts are higher
prioritized than timer interrupts. The interrupt handling process will be described
in more detail in Subsection 3.1.5.

3.14.4 System Calls

The C/C++ library defines a set of system calls as abstraction from the actual exe-
cution environment. For example, the printf function performs the formatting
in platform independent C code and finally invokes the write system call with
a fixed char array. Typically, an embedded system provides a trap handler that
redirects the write system call to a UART/terminal component.

Also, a SyscallHandler component is provided to emulate system calls of the
C/C++ library by re-directing them to the simulation host system. The emulation
layer for example allows opening and reading/writing from/to files of the host sys-
tem. This functionality is used for example to support SW coverage measurement
with GCOV.

The syscall handler can be called in one of two ways: 1) Through a trap handler
that re-directs the system call to the syscall handler from SW using memory-
mapped I/O (this approach enables a flexible re-direction of selected system calls),
or 2) directly intercept the system call (i.e. the RISC-V ECALL instruction) in the
CPU core, instead of jumping to the trap handler. The behavior is configurable
per core. The system call handling process is presented in more details in Subsec-
tion 3.1.5.

3.1.4.5 VP Initialization

The main function in the VP is responsible to instantiate, initialize and connect
all components, i. e. to setup the architecture. An Executable and Linking Format
(ELF) loader is provided to parse and load an executable RISC-V ELF file into the
memory and setup the program counter in the CPU core accordingly. Finally, the
SystemC simulation is started. The ELF file is produced by the GNU toolchain [88]

32

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

by (cross-)compiling the application program and optionally linking it with the
C/C++ standard library or other RISC-V libraries (see left side of Figure 3.1). Also,
and specially, the approach supports a bare-metal execution environment without
any additional libraries and is tested to work with the FreeRTOS, Zephyr and RIOT
operating systems.

3.1.4.6 Timing Model

The RISC-V VP provides a simple and configurable instruction-based timing
model in the core and, by following the TLM-2.0 communication standard, transac-
tions can be annotated with optional timing information to obtain a more accurate
timing model of the executed software. It is also extended by a plugin interface
that allows integrating external timing information into the core, with the option
to integrating more accurate timing models like [35].

3.1.5 VP Interaction with SW and Environment

In this section, more details on the HW/SW interaction are provided; in partic-
ular on interrupt handling, and environment interaction via system calls in the
RISC-V VP.

3.1.5.1 Interrupt Handling and HW/SW Interaction

In the following, an example application is shown that periodically accesses a
sensor to demonstrate the interaction between hardware (VP-side) and software
with a particular focus on interrupt handling. Firstly, the software application
running on the VP is described, continuing over a minimal assembler bootstrap
code to initialize interrupt handling, closing with a description on how interrupts
are processed in more detail. Later in Subsection 3.1.8.1, the corresponding
SystemC-based sensor implementation in the RISC-V VP is presented.

Software Side Listing 3.1 shows an example application that reads data from
a sensor and copies data to a terminal component. The sensor and terminal are
accessed through memory-mapped I/O. Their addresses are defined at the top of
the program. They need to match with the configuration in the VP. The sensor
periodically triggers an interrupt, denoting that new data is available. The main
function starts by registering an interrupt handler for the sensor interrupt (Line 27).
Again, the interrupt number specified in SW has to match the configuration in the
VP. Next, the sensor is configured in Lines 29 to 30 using memory-mapped I/O. The
SCALER denotes how fast sensor data is generated and the filter setting what kind

33

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

#include "stdint.h"
#include "irq.h"

static volatile char* const TERMINAL_ADDR = (char* const)0x20000000;
static volatile char* const SENSOR_INPUT_ADDR = (char* const)0x50000000;
static volatile uint32_t* const SENSOR_SCALER_REG_ADDR = (uint32_tx*

< const)0x50000080;

7 static volatile uint32_t* const SENSOR_FILTER_REG_ADDR = (uint32_t*

<~ const)0x50000084;

Ul W N~

9 bool has_sensor_data = 0;

11 void sensor_irq_handler () {
12 has_sensor_data = 1;

13 }

15 void dump_sensor_data() {
16 while (!'has_sensor_data) {

17 asm volatile ("wfi");

18 }

19 has_sensor_data = 0;

20

21 for (int i=0; i<64; ++i) {

22 *TERMINAL_ADDR = *(SENSOR_INPUT_ADDR + i);
23 }

24 }

25

26 int main() {

27 register_interrupt_handler (2, sensor_irq_handler);
28

29 *SENSOR_SCALER_REG_ADDR 5;
30 *SENSOR_FILTER_REG_ADDR = 2;

31

32 for (int i=0; i<3; ++i)
33 dump_sensor_data();
34

35 return 0;

36

Listing 3.1: Example application running on the VP to demonstrate the HW/SW
interaction.

of post-processing is performed on the data. Finally, the copy process is iterated for
three times (Lines 32 to 33) before the program terminates. Each iteration starts by
waiting for sensor data (Lines 16 to 18). The global boolean flag has_sensor_data
is used for synchronization. It is set in the interrupt handler (Line 12) and unset
again immediately after the waiting loop (Line 19). The wfi instruction is a hint to
the CPU core to wait until the next interrupt occurs.

Bootstrap Code and Interrupt Handling Listing 3.2 shows the essential parts of
a bare-metal bootstrap code, which is written in assembler and linked with the
application code, to handle interrupts. Support for integration with the C/C++
library is also available, e. g. by executing the instructions at the beginning of the
main function or integrating them directly into the crt0.S file, which is the entry

34

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

.globl _start
.globl main
.globl level_1_interrupt_handler

la t0, level_O_interrupt_handler

csrw mtvec, tO # register interrupt/trap handler

csrsi mstatus, O0x8 # enable interrupts in general
9 1i t1, 0x888
10 csrw mie, t1 # enable exzternal/timer/\gls{sw} interrupts
11 jal main

1
2
3
4
5 _start:
6
7
8

13 # stop simulation with the *exit* system call

14 1i a7, 93 # syscall exit has number 93

15 1i a0, O # argument to exit

16 ecall # RISC-V system call

17

18 level_O_interrupt_handler:

19 # ... store registers on the stack %f necessary ...

20 csrr a0, mcause

21 jal level_1_interrupt_handler

22 # ... re-store registers in case they have been saved ..
23 mret # return from interrupt/trap handler

Listing 3.2: Bare-metal bootstrap code demonstrating interrupt handling

point of the C library and similarly to the bare-metal code also calls the main
function after performing some basic initialization tasks. The _start label is the
entry point of the whole program. The registers mtvec, mstatus, mie and mcause are
CSRs that essentially store the interrupt handler address, core status information,
enabled interrupts and interrupt source, respectively. The instructions CSRR and
CSRW read and write a CSR into and from a normal CPU register, respectively. The
instruction CSRSI sets the bits in the CSR based on the provided immediate value.
Before the main function is called (Line 11), the interrupt handler base address
(level-0) is stored in the mtvec register (Lines 6 to 7) and all interrupts are enabled
(Lines 8 to 10). After the main function returns, the exit system call is invoked to
terminate the VP simulation (Lines 14 to 16). More details on system calls can be
found in the next subsection.

In general, an interrupt can occur at any time during execution of the applica-
tion SW. All interrupts propagate to the PLIC (i. e. the RISC-V interrupt controller)
first and are prioritized there. The CPU core only receives a notification that
some interrupt is pending and needs to be processed. The core will prepare the
interrupt by storing the program counter into the mepc CSR, setting the mcause
CSR appropriately (to denote an interrupt in this case). The core then reads the
base address from the mtvec CSR and sets the program counter to that address,
i. e. effectively directly jumping to the level-0 interrupt handler (first instruction at
Line 20). The interrupt handler (level-0), first in Line 20, reads the reason (i. e. local
or external interrupt) for the interrupt into the a0 CPU register, which according to

35

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

the RISC-V calling convention [18] stores the first argument of a function call. Then,
in Line 21 an interrupt handler implemented in C is called (level-1, not shown in
this example). Essentially, this level-1 handler deals with a local timer interrupt
by resetting the timer with an external interrupt by asking the IC for the actual
interrupt number with the currently highest priority (through a memory-mapped
register access) and then calls the application provided interrupt handler function
(Lines 11 to 13 in Listing 3.1, this step is ignored if none has been registered for
the interrupt number). Finally, the mret instruction restores the previous program
counter from the mepc CSR. Please note, that the level-0 handler typically stores
and re-stores the register values by pushing and popping them to/from the stack
before/after calling the level-1 handler, respectively.

1 #define SYS_write 64

2

3 ssize_t write(int fd, const void *buf, size_t count) {
4 return syscall(SYS_write, fd, (long)buf, count, 0);
5 %}

6

7 long syscall(long n, long _a0, long _al, long _a2, long _a3) {

8 // store arguments in CPU register and trigger ecall
9 register long a0 asm("a0") = _a0;

10 register long al asm("al") = _ail;

11 register long a2 asm("a2") = _a2;

12 register long a3 asm("a3") = _a3;

13 register long a7 asm("a7") = n;

14

15 // special RISC-V instruction denoting a system call
16 asm volatile ("ecall" : "+r"(a0) : "r"(al), "r"(a2), "r"(a3), "r"(a7));
17

18 // store potential error code and return result

19 if (a0 < 0) {

20 errno = -al;

21 return -1;

22 } else {

23 return a0;

24 }

25 }

Listing 3.3: System call handling stub linked with the C library (guest side,
executed on the VP host system). This example listing is based on the RISC-V
newlib port available at https://github.com/riscv/riscv-newlib.

36

https://github.com/riscv/riscv-newlib

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 #define SYS_write 64

2

3 // execute syscall on the host system (SyscallHandler)

4 ssize_t sys_write(int fd, const void *buf, size_t count) {

5 const void *p = (const void *)guest_to_host_pointer (buf);
6 return write(fd, p, count);

7}

8

9 long execute_syscall(long n, long _a0, long _al, long _a2, long _a3) {
10 switch (n) {

11 case SYS_write:

12 return sys_write(_a0, (const void *)_al, _a2);

13 /7.

14 }

15

16

17 // function inside the CPU core

18 void execute_step() {

19 auto instr = mem_if->load_instr(program_counter);

20 auto op = decode(instr);

21

22 switch (op) {

23 case Opcode::ECALL: {

24 if (intercept_syscalls_option) {

25 // intercept and redirect syscall to host system

26 regs[a0] = execute_syscall(regs[a7], regs[a0], regs[all, regs[a2],
— regs[a3]);

27 } else {

28 // jump to SW trap handler (let SW decide how to handle syscall)

29 // SW will either direct the syscall to a peripheral or the

30 // SyscallHandler component (which is what the core does

31 // directly when intercepting syscalls)

32 raise_trap (EXC_ECALL);

33 }

34 } break;

35 VIAXE

36 }

37}

Listing 3.4: Concept on system call execution on the RISC-V VP, either redirect to
the host system or take trap.

37

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.1.5.2 Environment Interaction: Syscall Emulation and C/C++ Library

Syscalls are a way of user-code to access certain functions of an underlying OS.
While bare-metal applications do not have such systems, a user might want to use
the host’s functions for convenience.

Thus, the simplest configuration of the RISC-V VP is able to provide an emula-
tion layer for executing system calls by redirecting them to the host system running
the VP simulation. This requires passing arguments from the guest application
into the host system and integrate the return values back into the guest application
(i.e. memory of the VP). Implementing syscalls enables an easy support for the
C/C++ standard library for testing purposes. Furthermore, one can directly use
GCOV to track the coverage of the applications simulated on the RISC-V VP, as
the GCOV instrumentation requires syscall support to open and write to files.

For example, consider the printf function provided by the C standard library:
Most of its functionality is implemented as portable C code independently of the
execution environment. Essentially, the printf function will apply all formatting
rules and create a simple char buffer, which is then passed to the write system call.
At this point, interaction with the execution environment is required. Listing 3.3
shows the relevant part of a stub that is provided in the RISC-V port of the C library.
Essentially, the arguments of the system call are stored in the CPU registers a0 to
a3 and the syscall number in a7. Then, the ecall instruction is executed. The
VP simulator will detect the ecall instruction and directly executes the syscall
on the host system as shown in Listing 3.4, if configured to do so. Note that it is
also possible to execute this by using a trap handler, similar to the interrupt handler
described in the previous section. Essentially, it would jump to the level-0 interrupt
handler with the mcause CSR being set to the syscall identifier, and then redirect
the write call to e. g. a UART/terminal component.

In case of the write syscall, a pointer argument buf is passed. This is a
pointer value from the guest system, i.e. an index in the RISC-V VP’s memory
array mem, and has to be translated to a host memory pointer in order to execute
the write syscall on the host system. Therefore, the guest_to_host_pointer
function (Line 5) adds the base address of the VP byte memory array, i.e. mem +
buf . The result of the syscall is stored in the a0 register and passed back to the C
library.

In general, the guest and host system might have different architectures with
different word sizes, e. g. in one case the guest system (which is simulated in the
VP) can be a 32 bit and the host system (which runs the VP) a 64 bit system.
Therefore, one has to be careful when data is passed between the guest and the
host. Primitive types, e.g. int and bool, can be passed directly from the guest
to the host, because the host system running the VP uses data types with equal or

38

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

larger sizes, thus no information is lost when passing the arguments. When passing
values back from the host a check can be performed, if necessary, to ensure that
no relevant information is truncated, e. g. due to casting a 64 bit value into a 32 bit
one. Pointer arguments need to be translated to host addresses, as described above,
before accessing them on the host system, and also to be aligned to the host’s word
size. A write-access can be thus directly propagated back to the guest application.
Structs can be accessed and copied recursively, considering the rules for accessing
primitive and pointer types.

Other syscalls are implemented similarly to the write syscall, enabling a basic
support for non-bare metal applications to run and access the host’s ressources.

3.1.6 VP Performance Optimizations

In this section, two performance optimizations for the RISC-V VP are discussed
that result in significant simulation speed-ups. The first optimization is a direct
memory interface to fetch instructions and perform load/store operations from/to
the (main) memory more efficiently. The second is a temporal decoupling tech-
nique with local time quanta to reduce the number of costly context switches,
especially, in the CPU core simulation. Both techniques are described in the
following.

3.1.6.1 Direct Memory Interface (DMI)

The CPU core translates every load and store operation into a transaction which
is routed through the bus to the target. Most of the time the main memory is the
target of the access, and always accessing the memory through a bus transaction
is very costly. Even more so, because fetching the next instruction requires to
load it from the memory too. Thus, at least one bus transaction is executed for
every instruction. To optimize the access of the main memory, and in particular
instruction fetching, using proxy classes with a Direct Memory Interface (DMI) is
beneficial. The DMI stores the address offset where the memory is mapped in the
overall address space as well as the size and pointer to the start of the memory.
The RISC-V VP offers one proxy class for fetching instructions and one to access
the memory in general, i.e. to perform load/store byte/half/word instructions.
With the proxy classes enabled, the CPU core will first query the proxy class. It
will match in case the main memory is accessed (for the instruction proxy class,
only fetching instructions from main memory is allowed) and otherwise convert
the access into a transaction and normally route it through the bus. Using this,
of course, requires a consideration to make: Using the DMIs will significantly

39

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

improve the simulation performance (cf. Subsection 3.1.9.2) but also decrease
timing accuracy.

3.1.6.2 Local Time Quanta

A SystemC-based simulation is orchestrated by the SystemC simulation kernel that
switches execution between the various threads (cf. Section 2.2) While this is not a
performance problem for most components, since they become runnable on very
specific events, context switching can become a major bottleneck in simulating
the CPU core. The reason is that a direct implementation will perform a context
switch after executing every instruction, because simulation time has passed
and the SystemC kernel needs to check for other runnable threads to perform
synchronization. However, most of the time no other thread is runnable and the
CPU thread is resumed again. Even if some other thread would become runnable
it is still fine to keep running the CPU thread for some time (ahead of the global
simulation time of the system). For example, even if the sensor thread would
be runnable and trigger an interrupt once executed, delaying the sensor thread
execution for a small amount of time and keeping the CPU thread running usually
does not have an influence on the functional behavior of the system. Generally,
the software does not have knowledge of the exact timing behavior and thus is
written in such a way, e. g. by employing locks and flags, to always wait for certain
conditions.

3.1.7 Simulation of Multi-Core Platforms

The RISC-V VP also provides support for simulation of RISC-V multi-core plat-
forms. It supports instantiating and mixing multiple 32 and 64 bit cores. Each
core is attached to the bus using a local TLM memory interface. Furthermore, each
core is assigned a unique identifier, starting with zero, during instantiation. This
core identifier is denoted as hart-id, according to the specification [17]. Access to
the hart-id is provided through the read-only, SW accessible, mhartid CSR. Based
on the hart-id, the SW can decide the behavior for each core. Furthermore, the SW
can use atomic instructions for synchronization.

In the following, an example RISC-V multi-core SW is given for illustration and
more details on the implementation of the RISC-V atomic ISA extension are given.

3.1.7.1 Example Bare-Metal Multi-Core SW

Listing 3.5 shows an example bare-metal SW that demonstrates the multi-core
simulation concept from the SW side. For illustration purposes, it is defined here
that the platform consists of two cores. Both cores start at the same time and use

40

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

the same entry-point (Line 5, i.e. the _start label). By reading the mhartid CSR,
the SW obtains the id, either 0 or 1, of the executing core (Line 6). The core
id is stored in register a0. Based on the id the SW control flow is manipulated.
Each core is initializing its stack pointer (sp register) address to a separate area
(Line 13 and Line 16). Finally, an external main function is called (Line 20) with the
core id passed as first argument (in conformation to the RISC-V calling convention
that defines the first argument to be provided in register a0). The code after the
main function ensures that only the second core can proceed to the exit system
call (Lines 32 to 34) and stop the simulation for demonstration purposes. The first
core that returns from the main function keeps spinning in the loop at Line 29. This
synchronization mechanism is achieved by using an AMO instruction to read and
increment a shared counter.

.globl _start
.globl core_main

1
2
3
4 # NOTE: each core will start here with ezecution

5 _start:

6 csrr a0, mhartid # return a core specific number 0 or 1

7 1i t0, O

8 beq a0, t0, core0

9 1i t0, 1

10 beq a0, tO, corel

11 # 4nitialize stack for core O and core 1

12 core0:

13 la sp, stackO_end # code ezecuted only by core 0

14 j end

15 corel:

16 la sp, stackl_end # code ezecuted only by core 1

17 end:

18

19 # function argument stored in register a0 (according to RISC-V calling convention)
20 jal core_main

21

22 # watit until all two cores have finished

23 la tO0, exit_counter

24 1i t1, 1

25 1i t2, 1

26 amoadd.w a0, tl, 0(t0) # get current counter wvalue and increase existing value
27 # the first core reaching this point will spin

28 1:

29 blt a0, t2, 1b # jump ome label backwards in case a0 < t2
30

31 # stop whole simulation with the *exit* system call

32 1i a7, 93 # syscall ezxit has number 93

33 1i a0, O # argument to exit

34 ecall # RISC-V system call

35

36 stackO_begin:

37 .zero 32768 # allocate 32768 zero-initialized bytes in memory
38 stackO_end:

39 stackl_begin:

40 .zero 32768

41 stackl_end:

42 exit_counter:

43 .word O # allocate 4 zero-initialized bytes in memory

Listing 3.5: Bare-metal bootstrap code for a multi-core simulation with two cores.

41

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.1.7.2 Implementation of the Atomic ISA Extension

Listing 3.6 shows the relevant part of the memory interface that demonstrates the
implementation for atomic instructions. Please note that each core has its own
separate memory interface. As already discussed in the preliminaries (Subsec-
tion 3.1.3.1), the A instruction set extension provides two types of instructions: 1)
amo,and 2) 1r / sc. In the following, more details are given on how to implement
these instructions, while referring, for illustration purposes, to Listing 3.6.

AMO Instructions To execute an amo instruction, the core has to perform a load
(Line 1) and store (Line 6) operation atomically without intervening memory
access operations of other cores. A simple way to ensure the atomic execution
property is to lock the bus access during amo instructions. Therefore, a shared lock
is acquired by the core’s memory interface before a load operation (Line 2) and
released again after the store (Line 52) operation. In case the bus is already locked,
the lock operation will wait until the lock is released. Before performing a memory
access operation, each core waits until it has obtained access rights (Line 35), i.e.
the bus is not locked by other cores or by the active core itself. This locking scheme
also supports DMI operations (Lines 39 to 45).

Peripherals that have write access to the bus (e.g. the DMA controller) are
attached through a 1-to-1 TLM interconnect to the bus in order to ensure that
they respect the bus locking. The peripheral interconnect transparently forwards
all peripheral write transactions, but waits in case the bus is locked by any core.
Once the bus lock is released, all waiting (SystemC) processes are notified using a
(SystemC) event.

LR / SC Instructions To execute an 1r instruction, the core (memory interface)
tracks a reservation on the load address and acquires the shared bus lock (Lines 12
to 13). The lock is kept acquired while “forward-progress” (see preliminaries Sub-
section 3.1.3.1) is maintained by the core. Essentially, the lock is released in case:

e More than 16 instructions are executed (number chosen arbitrarily).

e A trap (exception) or interrupt is taken.

e A store is performed by the core holding the lock.

The sc instruction succeeds in case the lock is still acquired (Line 19) and
a reservation on the store address exists (Line 20). In any case, the bus lock is

released by the memory interface after executing the sc instruction (Line 24 or
Line 52).

42

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 int32_t atomic_load_word(uint64_t addr) {

2 bus_lock->lock(get_hart_id());

3 return load_word(addr);

4 3}

5

6 void atomic_store_word(uint64_t addr, uint32_t value) {

7 assert (bus_lock->is_locked(get_hart_id()));

8 store_word(addr, value);

9 %}

10

11 int32_t atomic_load_reserved_word(uint64_t addr) {

12 bus_lock->lock(get_hart_id());

13 lr_addr = addr; // reservation for the load address on the whole memory

14 return load_word(addr);

15

16

17 bool atomic_store_conditional_word(uint64_t addr, uint32_t value) {

18 /* The lock is established by the LR instruction and the lock is kept while
— "forward-progress" is maintained. */

19 if (bus_lock->is_locked(get_hart_id())) {

20 if (addr == 1lr_addr) {

21 store_word (addr, value);

22 return true; // SC succeeded

23 }

24 bus_lock->unlock();

25 }

26 return false; // SC failed

27 '}

28 void store_word(uint64_t addr, uint32_t value) {

29 store_data(addr, value);

30 ¥

31

32 template <typename T>
33 inline void store_data(uint64_t addr, T value) {

34 // only proceed if the bus is not locked at all or is locked by this core
35 bus_lock->wait_for_access_rights(get_hart_id());

36

37 // check if this access falls within any DMI range

38 bool done = false;

39 for (auto &e : dmi_ranges) {

40 if (e.contains(addr)) {

41 quantum_keeper.inc(e.dmi_access_delay);

42 *(e.get_mem_ptr_to_global_addr<T>(addr)) = value;

43 done = true;

44 }

45 }

46

47 // otherwise (no DMI), perform a normal transaction routed through the bus
48 if (!done)

49 do_transaction(tlm::TLM_WRITE_COMMAND, addr, (uint8_t *)&value, sizeof(T));
50

51 // do mothing in case the bus is not locked by this hart

52 bus_lock->unlock(get_hart_id());

53 }

54

55 // ... other load/store functions and load_data similar

Listing 3.6: Core memory interface with atomic operation support.

43

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Similar to the amo instructions, the shared bus lock ensures that other cores
(and peripheral bus masters) do not interfere with the 1r / sc instruction
sequence execution and hence the 1r / sc sequence eventually succeeds when
maintaining “forward-progress”.

struct SimpleSensor : public sc_core::sc_module {
tlm_utils::simple_target_socket<SimpleSensor> tsock;

1
2
3
4 interrupt_controller *ic = 0;
5 uint32_t irq_number = 0;
6
7
8

sc_core::sc_event run_event;

// memory-mapped data frame

9 std::array<uint8_t, 64> data_frame;
10
11 // memory-mapped configuration registers

12 uint32_t scaler = 25;
13 uint32_t filter = 0;

14 std::unordered_map<uint64_t, uint32_t *> addr_to_reg;

15

16 enum {

17 SCALER_REG_ADDR = 0x80,

18 FILTER_REG_ADDR = 0x84,

19 8

20

21 SC_HAS_PROCESS(SimpleSensor) ;

22

23 SimpleSensor(sc_core::sc_module_name, uint32_t irq_number)

24 : irq_number (irq_number) {

25 tsock.register_b_transport(this, &SimpleSensor::transport);
26 SC_THREAD (run) ;

27

28 addr_to_reg = {

29 {SCALER_REG_ADDR, &scaler},

30 {FILTER_REG_ADDR, &filter},

31 8

32 }

33

34 void transport(tlm::tlm_generic_payload &trans, sc_core::sc_time &delay) {
35 auto addr = trans.get_address();

36 auto cmd = trans.get_command();

37 auto len = trans.get_data_length();

38 auto ptr = trans.get_data_ptr();

39

40 if (addr >= 0 && addr <= 63) {

41 // access data frame

42 assert (cmd == tlm::TLM_READ_COMMAND) ;

43 assert ((addr + len) <= data_frame.size());

44

45 // return last generated random data at requested address
46 memcpy (ptr, &data_frame[addr], len);

47 } else {

48 assert (len == 4); // NOTE: only allow to read/write whole register
49

50 auto it = addr_to_reg.find(addr);

51 assert (it != addr_to_reg.end()); // access to non-mapped address
52

53 // trigger pre read/write actions

54 if ((cmd == tlm::TLM_WRITE_COMMAND) && (addr == SCALER_REG_ADDR)) {
55 uint32_t value = *((uint32_t *)ptr);

56 if (value < 1 || value > 100)

57 return; // ignore invalid values

58 }

44

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

59

60 // actual read/write

61 if (cmd == tlm::TLM_READ_COMMAND) {

62 *((uint32_t *)ptr) = *it->second;

63 } else if (cmd == tlm::TLM_WRITE_COMMAND) {

64 xit->second = *((uint32_t *)ptr);

65 } else {

66 assert (false && "unsupported tlm command for sensor access");
67 }

68

69 // trigger post read/write actions

70 if ((cmd == tlm::TLM_WRITE_COMMAND) && (addr == SCALER_REG_ADDR)) {
71 run_event.cancel();

72 run_event.notify(sc_core::sc_time(scaler, sc_core::SC_MS));
73 }

74 }

75 }

76 void run() {

77 while (true) {

78 run_event.notify(sc_core::sc_time(scaler, sc_core::SC_MS));
79 sc_core::wait(run_event); // 40 times per second by default
80

81 // fill with random data

82 for (auto &n : data_frame) {

83 if (filter == 1) {

84 n = rand() % 10 + 48;

85 } else if (filter == 2) {

86 n = rand() % 26 + 65;

87 } else {

88 // fallback for all other filter walues: random printable
89 n = rand() % 92 + 32;

90 }

91 }

92

93 ic->trigger_interrupt (irq_number);

94 }

95 }

9% };

Listing 3.7: SystemC-based configurable sensor model that is periodically filled
with random data - demonstrates the basic principles on modeling peripherals.

3.1.8 VP Extension and Configuration

The RISC-V VP is designed as a configurable and in particular extensible platform.
Itis very easy to add additional components (i. e. peripherals/controllers including
bus masters) and attach them to the bus system at a new address range, or change
the address mapping of the existing components. To provide an initial demon-
stration, different 32 and 64 bit cores are provided which can also be combined
into a multi-core platform. This allows for an easy (re-)configuration of the VP.
By following the TLM-2.0 communication standard, transactions can be annotated
with optional timing information to obtain a more accurate timing model of the
executed software. Support for additional RISC-V ISA or even custom extensions
(beyond IMACFD) can also be added inside the CPU core by extending the decode-

45

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

and execute functions accordingly. The RISC-V VP already provides a large feature
set with large potential for additional extensions, which made the RISC-V VP
suitable as foundation for different application areas, as can be demonstrated in
[32, 34, 35, 39, 40, 89, 90] and many more.

In the following, the extensibility and configurability of the RISC-V VP is
demonstrated by three concrete examples: addition of a sensor peripheral, ex-
tension of a GDB-based SW debug functionality and configuration matching the
RISC-V HiFivel board from SiFive.

3.1.8.1 Extending the VP with a Sensor Peripheral

This subsection presents the SystemC-based implementation of the VP sensor
peripheral, which is used by the SW example presented in Subsection 3.1.5.1. It
shows the principles on modeling peripherals and extending the RISC-V VP as
well as demonstrates the TLM communication and basic SystemC-based modeling
and synchronization. The sensor is instantiated in the main function of the VP
alongside other components and is attached to the TLM bus.

The sensor implementation is shown in Listing 3.7. The sensor model has a data
frame of 64 bytes that is periodically updated (overwritten with new data, Lines 82
to 91) and two 32 bit configuration registers scaler and filter. The update
happens in the run thread (the run function is registered as SystemC thread inside
the constructor in Line 26). Based on the scaler register value, this thread is
periodically unblocked (Line 78) by calling the notify () function on the internal
SystemC synchronization event. Thus, scaler defines the speed at which new
sensor data is generated. The filter register allows to select some kind of post-
processing on the data. After every update an interrupt is triggered, which will
propagate through the interrupt controller to the CPU core up to the interrupt
handler in the application SW. Therefore, the sensor has a reference to the interrupt
controller (ic, Line 4) and an interrupt number provided during initialization
(Line 23 and Line 24).

Access to the data frame and configuration registers is provided through TLM
transactions. These transactions are routed by the bus to the transport function
(Line 34). The routing happens as follows: 1) The sensor has a TLM target socket
field, which is bound in the main function (i.e. VP simulation entry point) to an
initiator socket of the TLM bus. 2) The transport function is bound as destination
for the target socket in the constructor (Line 25).

Based on the address and operation mode, as stored in the generic payload
(Lines 35 to 36), the action is selected. It will either read (part of) the data frame
(Line 46) or read/write one of the configuration registers (Lines 61 to 67). In case
of a register access, a pre-read/write validation and post-read/write action can be

46

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

defined as necessary. In this example, the sensor will ignore invalid scaler values
(Lines 54 to 58) and reset the data generation thread on a scaler update (Lines 70
to 73). Please note, that the transaction object (generic payload) is passed by
reference and provides a pointer to the data, thus a write access is propagated back
to the initiator of the transaction as is defined in the TLM standard (cf. Section 2.2).
Optionally, an additional delay can be added to the sc_time delay parameter (also
passed by reference) for a more accurate timing model.

3.1.8.2 SW Debugging Support Extension

In this subsection, the RISC-V VP extension to provide SW debug capabilities
in combination with (for example) the Eclipse Integrated Development Environ-
ment (IDE) by implementing the GDB Remote Serial Protocol (RSP) interface is
described. Debugging for example enables to step through the SW line by line,
set (conditional) breakpoints, obtain and even modify variable values and also
display the RISC-V disassembly (with the ability to step through the disassembly).
Debugging can also be extremely helpful on the VP level to investigate errors, due
to the deterministic and reproducible SW execution on the VP.

Using the GDB RSP interface, the RISC-V VP acts as server and the GDB! as
client. They communicate through a TCP connection and send text based messages.
A message is either a packet or a notification (a simple single char +) that a packet
has been successfully processed. Each packet starts with a $ char and ends with
a # char followed by a two digit hex checksum (the sum over the content chars
modulo 256). For example the packet $mi11c4,4#£7 has the content mi11c4,4
and checksum £7. The m command denotes a memory read, in this case “read
0x4 bytes starting from address 0x111c4”. The server might then, for example,
return +$05000000#85, i.e. acknowledge the packet (+) and return the value 5
(two chars per byte with little endian byte order). To handle the packet processing
and TCP communication, a gdb-stub component is provoded for the RISC-V VP.
The whole debugging extension is only about 500 additional lines of C++ code, with
most of them to implement the gdb-stub. On the VP side, only the CPU core has
been modified to lift the SystemC thread into the gdb-stub, to allow the CPU to
interrupt and exit the execution loop in case of a breakpoint and thus effectively
transfer execution control to the gdb-stub.

Debugging works as follows: Start the RISC-V VP in debug-mode (command line
argument), this will transfer control to the gdb-stub implementing the RSP inter-
face, waiting for a connection from the GDB debugger. In another terminal, start
the GDB debugger. Load the same executable ELF file into the GDB (command

'In particular, the freely available RISC-V port of GDB, which knows about the available RISC-V
register set, the CSRs, and can provide a disassembly of the RISC-V instruction set.

47

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

file main-elf) as in the RISC-V VP. Connect to the TCP server of the VP (by
typing target remote :5005 to connect to localhost using port 5005). Now the
GDB debugger can be used as usual to set breakpoints, continue and step through
the execution. It is also possible to directly use a visual debugging interface, e. g.
ddd or gdb-dashboard or even the Eclipse IDE.

Please note, the ELF file contains information about the addresses and sizes
of the various variables in memory. Thus, a print (x) command with an integer
variable x is already translated into a memory read command (e.g. m11080,4).
Therefore, on the server side, i. e. the RISC-V VP, an extensive parsing of ELF files is
not necessary to add comprehensive debugging support. In total, only 24 different
GDB commands needed to be implemented, of which 9 can simply return an empty
packet and a few more to return some predefined answer. Relevant packets are,
especially: read one register (p), read all registers (g), read a memory range (m),
set/remove breakpoints (Z0 / z0), step (s) and continue (¢) through execution.

3.1.8.3 HiFivel Board Configuration

As a demonstration, in the following will be a configuration presented that matches
the HiFivel board from SiFive [91]. Besides the basic configuration which is
described in Subsection 3.1.8.3, the demonstration introduces also a virtual envi-
ronment for the RISC-V VP. This will be introduced in this section, but is explained
in full detail in Section 3.2. This virtual environment GUI allows the SW developer
to create and test SW as if they would have a real physical HiFivel board, including
buttons, LEDs etc. since the environment is also simulated. The core idea here is to
build a server-based environment interface (detailed in Subsection 3.1.8.3) which
provides the GPIOs section to the outside world, and where a client, in this case a
Qt-application, can connect. This Qt-application mimics the SoC’s environment,
i.e. for instance pressing buttons and displaying numbers on a seven segment
display, and is described in Subsection 3.1.8.3.

Basic Configuration The HiFivel [92] is based around the FE310 SoC [93] that
integrates a single RISC-V RV32IMAC core with several peripherals and memories.
Interrupts are processed by the CLINT and PLIC peripherals following the RISC-V
ISA specification. The PLIC supports 53 interrupt sources with 7 priority levels.
The RISC-V VP has a configuration, including the corresponding PLIC peripheral,
to match this specification. A non-volatile flash memory is provided to store the
application code and a small writable data memory to hold the application data.
The application data is initialized during the boot process by copying relevant data
(e.g. initialized global variables) from the flash memory into the data memory.
This initialization code is embedded in the application binary that is placed in the

48

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

vp-breadboard o

Qt-based
virtual env.

....................

' EEEES smsEm sEEEE SEEEF SEESN SESES SEEEE EEEEN EEEEE EEEEN
- INERE FREEE SEEES SRR SEERE SEW ammEE mmmsm mEmes EEEEs

Figure 3.2: Qt-based virtual environment, showing the HiFivel board with a seven
segment display (output) and a button (input), attached to the VP simulation
through a TCP connection.

flash memory. GPIOs and an UART are provided for communicating with the
environment. Each write accesses to the UART is redirected to the standard output
of the host system (usually the console), while the standard input is read and fed
into the corresponding registers of the UART peripheral. To speed up the design
process, the proposed register modeling layer is used to create these additional
peripheral models in SystemC. For the GPIO peripheral, a (re-usable) interface
is provided to access an environment model. An introduction on this interface is
given in the following, with a full in-depth demonstration in Section 3.2.

GPIO Server Environment Interface As introduced in Section 2.1, GPIO-
peripherals are used to connect the embedded system to the outside world. Each
GPIO pin can be configured to serve as output or input connection. Input pins can
trigger an interrupt when being written.

A GPIO-(TCP)-server is integrated into the FE310-compatible GPIO-interface
to provide access to the GPIO pins in order to attach an environment model. The
server runs in a separate system thread and hence needs to be synchronized with
the SystemC kernel. Therefore, the SystemC async_request_update function is
used to register an update function from the “outside timing” to be executed on
the next update cycle of the SystemC thread. The update function then triggers a
usual SystemC event notification to wake up the SystemC GPIO processing thread.

49

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

The virtual environment GUI, which is the client-side of the presented GPIO-
server, is described in the next section.

Virtual Environment GUI Figure 3.2 shows an example virtual environment
implemented in C++ using the Qt framework. To make it more intuitive for the user
in the first versions of the GUI, a photo from a “real” HiFivel board is included,
where a seven segment display and a button are attached to the GPIO pins. The
virtualization of this environment GUI was done by implementing the function-
ality to press the button via mouse input (see as Figure 3.2) as well as to show
numbers on the seven segment display in Qt, and to perform the corresponding
communication with the RISC-V VP via the GPIO server environment interface
(cf. previous section).

In a concrete example SW, the display shows the current counter value and
the button is used to control the count mode (switch between increment and
decrement). The main benefit then is to execute the exact same RISC-V ELF
binary on the real HiFivel board using the same setup as shown in the virtual
environment. The functional behavior of the SW on the real board was identical in
comparison to the VP. For a more detailed description, please refer to Section 3.2.

3.1.9 VP Evaluation

This section first describes how the RISC-V VP was tested to evaluate and ensure
the VP quality, and then presents results of a performance evaluation.

3.1.9.1 Testing

Testing is very important to ensure that the VP is working correctly. The following
list describes how the RISC-V VP was tested. In particular, it was used:

1. The official RISC-V ISA tests [94], in particular the RV32/64IMACFD tests.

2. The RISC-V Torture test-case generator [95], also targeting the RV32/64
IMACFD instruction set.

3. State-of-the-art Coverage Guided Fuzzing (CGF) techniques for test-case
generation. For more information on this approach please refer to [96].

4. Several example applications, ranging from bare-metal applications up to
examples using the FreeRTOS [68] and Zephyr [69] operating systems. This
is tested using observations if example applications behave as expected.

In contrast to the other tests, the RISC-V ISA tests are directed, meannig that
are hand-written and already encode the expected result inside the test. Hence, no
reference simulation is required for the ISA tests.

50

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

register values and

Our VP —y»| Signature-1

CGF

|

I
™)

load and execute ELF Selected memory

Reference .
Simulator —»| Signature-2

testcase generation|

RISC-V Torture

L,

Figure 3.3: Overview on the RISC-V Torture and CGF approach for VP testing.

Figure 3.3 shows an overview for the Torture and CGF approach. They both
work by generating a set of tests, i. e. each test-case is a RISC-V ELF binary, which is
then executed one after another on the RISC-V VP and (one or multiple) reference
simulators. In this evaluation, the official RISC-V reference simulator SPIKE [65] is
used. The RISC-V VP was extended to dump the execution result, called signature,
to be compared with SPIKE. The signature contains the register values and selected
memory contents. After each execution the dumped signatures are compared for
differences. Hence, the reference simulator is considered as a black box and no
intrusive modifications are required for this testing.

The RISC-V ISA tests, as well as the torture and fuzzing test generation ap-
proaches, primarily focus on testing the execution core. The example applications,
on the other hand, also tend to use larger portions of the whole VP platform,
specifically the peripheral devices. They further integrate the CLINT and PLIC
interrupt controller as well as selected peripherals that are required for the partic-
ular application. In the following, more details are provided on some selected
applications that demonstrate the applicability of the RISC-V VP for real-world
embedded applications.

Zephyr Examples The Zephyr OS is designed around a small-footprint kernel
primarily targeting resource constrained embedded systems. Zephyr supports
multiple architectures, including RISC-V. Specifically for these tests, support for
the HiFivel board is available for the RISC-V architecture. The HiFivel board
configuration of the RISC-V VP was used to run several Zephyr example appli-
cations that extensively use core components of the kernel; including threads,
timers, semaphores and message queues. In addition, examples applications are
tested that perform aes128 and sha256 encryption/decryption schemes using the
TinyCrypt library.

FreeRTOS Examples Similar to Zephyr, FreeRTOS is also designed around a
kernel component, targets embedded systems and provides support for the RISC-V
architecture. Several example applications were built for this evaluation, creating

51

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

multiple threads with different priorities, using queues for data passing, with
integrated interrupts. In addition, two applications were created that use the
File Allocation Table Filesystem (FAT) and User Datagram Protocol (UDP) library
extensions of FreeRTOS. The first application formats an SD card by creating a new
FAT32 Master Boot Record and writing data to the new FAT partition. The second
application sends/receives a set of UDP packets using an Ethernet peripheral
to/from a remote computer.

3.1.9.2 Performance Evaluation

In the previous conference paper [72], it was already demonstrated: 1) that the
RISC-V VP provides more than 1000 times faster simulation performance com-
pared to different RTL implementations, and 2) the effectiveness of the presented
RISC-V VP simulation performance optimization techniques (between 6.1x and
7.8x improvement on the considered benchmark set). In this subsection, an
updated performance evaluation of the RISC-V VP is presented on a more recent
and faster simulation host. A set of different applications are used to demonstrate
the execution performance, measured in Million Instructions Per Second (MIPS),
of the RISC-V VP.

Furthermore, a performance comparison to other RISC-V simulators is pro-
vided, in particular: FORVIS, SAIL (the C simulator back-end in particular),
gemb, SPIKE and QEMU (which have been introduced in the related work Sub-
section 3.1.2).

Experimental Setup and Results All experiments are performed on a Fedora
29 Linux system with an Intel Xeon Gold 5122 processor with 3.6 GHz. The
memory limit is set to 32 GiB with a timeout of 4 hours (i. e. 14400 seconds). The
RISC-V VP has been compiled with GNU Compiler Collection (GCC) version 8.2.1
with enabled -03 optimization.

Table 3.1 shows the results: The first six columns show the benchmark name
(column: Benchmark), number of executed instructions (column: #instr), Lines of
Code (LoC) in C (column: C) and in assembly (column: ASM), the aforemen-
tioned MIPS (column: MIPS) performance metric and the simulation time (col-
umn: time) for the RISC-V VP. The remaining five columns show the simulation
time for the other RISC-V simulators. All simulation times are reported in seconds.
M.O. denotes a memory out and N.S. that the benchmark is not supported by the
simulator.

Benchmarks from different application areas are considered:

o dhrystone is a synthetic computing benchmark designed to measure the

52

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

general (integer) execution performance of a CPU. 10000000 iterations of
the algorithm are executed.

e gsort is the well known quicksort algorithm in a standard implementation to
sort an array of 50 000 000 elements.

e fibonacci is a small program implemented in assembler that performs
1000000 000 iterations and ignores any integer overflow.

e zephyr-crypto uses two threads that communicate through a (single-element)
message queue. The first thread encrypts ~ 1 MB of data, using the aes128
algorithm of the TinyCrypt library, while the second thread decrypts it again.

e mc-ivadd is a multi-core benchmark that performs a vector addition and stores
the result in a new vector. Each core operates on a different part of the vector.
The vector size is set to 4194 304 and the algorithm performs 30 iterations.

The results are reported for the RISC-V VP with one RV32 core (four RV32 cores
for the multi-core benchmark). However, similar results are obtained when using
an RV64 core(s).

It can be observed that the RISC-V VP provides a high simulation performance
between 42 to 53 MIPS with an average of 46 MIPS on the benchmark set, which
demonstrates the applicability of the RISC-V VP to real-world embedded applica-
tions. The pure assembler program (fibonacci) achieves the highest simulation per-
formance, since it does not require performing memory access operations (besides
instruction fetching). It can also be observed that the additional synchronization
overhead (in the SystemC simulation) to perform a multi-core simulation has
no significant performance impact, although the SystemC kernel is not using a
multi-threaded simulation environment, but executes one process (i.e. one core)
at a time and switches between the processes. Please note that for the multi-core
simulation benchmark, the total MIPS for all four cores are reported.

Comparison with other Simulators Compared to the other RISC-V simulators
(right side of Table 3.1), the RISC-V VP shows very reasonable performance results
and is located in the front midfield. As expected, the RISC-V VP is not as fast as
the high-speed simulators SPIKE and in particular QEMU. The reason for that can
be found in the performance overhead of the SystemC simulation kernel and the
more detailed simulation of the RISC-V VP. This includes more accurate timing
by leveraging SystemC, instruction accurate interrupt handling and the ability to
integrate TLM-2.0 memory transactions (cf. the trade-off between simulation time
and accuracy in Section 2.2). Furthermore, compared to QEMU, the results do not
integrate Dynamic Binary Translation (DBT) or Just-in-Time Compilation (JIT).
On the other hand, the RISC-V VP is much faster than FORVIS and SAIL as well as

53

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Table 3.1: Experiment results - all execution times reported in seconds, num-
ber of executed instructions (#instr) reported in Billions (B). MIPS = Millions
Instructions Per Second. LoC = Lines of Code in C and assembly (ASM). M.O.
= Memory Out (32GB limit). T.O. = Time Out (4h = 14400 seconds limit). N.S. =
Not Supported.

. LoC vp Other Simulators (Time)

Benchmark #instr

C ASM | MIPS Time | FORVIS SAIL gem5 SPIKE QEMU
dhrystone 4.06B 362 2212 427 94.86 M.O. 10986.24 1170.08 13.90 3.53
gsort 293B 146 2279 42.8 68.71 M.O. T.O. 985.99 11.01 3.04
fibonacci 5.99B / 17 53.9 111.15 | 13954.57 12830.05 1447.37 17.19 1.94
zephyr-crypto | 2.52B 86 5407 46.6 54.11 N.S. N.S. N.S. N.S. 6.50
mc-ivadd 239B 26 1798 444 53.76 N.S. N.S. N.S. 48.11 N.S.

gemb, which arguably is the closest to the RISC-V VP in terms of the intended use-
cases. Please note, the zephyr-crypto and mc-ivadd benchmarks are not supported
(N.S.) on some simulators due to missing support for the Zephyr operating system
and the multi-core RISC-V test environment, respectively. In the following, the
results are discussed in more detail.

Compared to QEMU, the performance overhead is most strongly pronounced
on the fibonacci benchmark. The reason can be found in that the benchmark iterates
a single basic block and only performs very simple operations (mostly additions)
without memory accesses. This has two implications: This single basic block is
pre-compiled once into native code using DBT and then re-used for all subsequent
iterations (hence QEMU executes at near native performance). Furthermore, since
only simple operations are used, the simulation overhead induced by SystemC has
a comparatively strong influence on the overall performance.

On more complex benchmarks such as gsort and zephyr-crypto, the overhead to
QEMU is less strongly pronounced. These benchmarks have a much more complex
control flow and hence require to compile several basic blocks and also use more
complex instructions that take longer time for (native) execution, compared to a
simple addition. Furthermore, zephyr-crypto performs several simulated context
switches between the Zephyr OS and the worker threads, which has additional
impact on the simulation performance of QEMU, since this causes an indirect and
non-regular control flow transfer between the basic blocks.

Compared to SPIKE, the performance overhead is mostly uniformly distributed
(since SPIKE does not use DBT either) on the single core benchmarks, with SPIKE
being around 6.2x to 6.8x faster than the RISC-V VP. The performance on the multi-
core benchmark mc-ivadd on the other hand is very similar for both SPIKE and the
RISC-V VP. Apparently, SPIKE is very strongly optimized for simulation of single

54

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

core systems and hence the newly introduced synchronization and context switch
overhead is very significant.

Compared to gemb, the RISC-V VP is significantly faster (between 12.3x to
14.4x). The primary use case of gem5 is also not a pure functional simulation
(which is the goal of SPIKE and QEMU) but rather an architectural exploration
and analysis. Thus, gem5 provides more detailed processor and memory models
with complex interfaces which in principle can also be extended for accurate extra-
functional properties like the RISC-V VP. Furthermore, gemb5 is a large (and aims
to be a rather generic) platform which supports different architectures besides
RISC-V which causes additional performance overhead.

Compared to FORVIS and SAIL, the RISC-V VP is consistently much faster
(up to two orders of magnitude). The reason is that these simulators have been
designed with a different use-case in mind (establishing an executable formal
representation of the RISC-V ISA) and hence very fast simulation performance
is only a secondary goal. Furthermore, FORVIS runs into memory outs (M.O.),
which may indicate a memory leak in the implementation. SAIL has a time-out
(T.O.) on the gsort benchmark, while a 10x smaller version of gsort completed
successfully within 700.22 seconds on SAIL. Hence, this time out may also indicate
a memory related problem in SAIL since gsort requires a significant amount of
memory for the large array to be sorted.

In summary, the simulation performance very strongly depends on the sim-
ulation technique, which in turn depends on the primary use-case of the sim-
ulator. The goal of the RISC-V VP is to introduce an open-source, extendable
implementation that leverages SystemC TLM-2.0 into the RISC-V ecosystem to lay
the foundation for advanced SystemC-based system-level use cases. Overall, the
RISC-V VP provides a high simulation performance with an average of 46 MIPS in
the shown benchmark set.

3.1.10 Discussion and Future Work

The RISC-V based VP is implemented in SystemC TLM-2.0 and already provides
a significant set of features, which makes the RISC-V VP suitable as foundation
for various application areas, including early SW development and analysis of
interactions at the HW/SW interface of RISC-V based systems. Nonetheless, the
RISC-V VP can still be further improved. In the following, different directions are
sketched, that either were not shown in detail in this section, or could be considered
for future work.

One direction in which progress was made is the extension of the RISC-V VP
with new components and integration of additional RISC-V ISA extensions. Also
not discussed in this section are the RISC-V floating-point extensions F (single-

55

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

precision) and D (double-precision) which were implemented in order to support
the complete RISC-V common standard ISA [16], including an integration of Mem-
ory Management Unit (MMU) to support virtual memory layouts and memory
protection. These layouts are described in the RISC-V specification as the Sv32,
Sv39 and Sv48 virtual memory systems [17], that the MMU supports to match
different application areas. Specifically, these extensions allow the RISC-V VP to
run the Linux OS (see [49]).

For future work, further performance optimizations are also very interesting, in
particular for running supervisor mode OSes. Two techniques seem very promis-
ing: 1) Integration of DBT/JIT techniques to avoid the costly interpreter loop
whenever possible, e. g. translate and cache RISC-V basic blocks. This (dynamic)
translation from RISC-V instructions to the simulation host instruction set should
also preserve (for example) timing information of the SystemC simulation to avoid
losing accuracy in the simulation timing model. 2) Use a real host computer thread
for each core in a multi-core simulation. This requires dedicated techniques to
synchronize with the SystemC simulation.

While extensive testing was already performed for the RISC-V VP, in particular
the core, additional verification techniques could be considered, with a stronger
emphasis on verification of peripherals and other IP components. One of these
methods can be found in Section 4.1. Furthermore, it may be promising to consider
formal verification techniques for SystemC, e.g. [97-99], and also investigate
(UVM-based [100]) constrained random techniques for test-case generation [101].

3.1.11 Conclusion

In this section, the first RISC-V based VP was proposed and implemented to further
expand the RISC-V ecosystem. The VP has been implemented in SystemC and
designed as extensible and configurable platform around a RISC-V RV32/64IMACFD
(multi-)core with a generic bus system employing TLM-2.0 communication. In
addition to the RISC-V core(s), SW debug and coverage measurement capabilities
are provided, along with a set of essential peripherals, including the RISC-V CLINT
and PLIC interrupt controllers, support the FreeRTOS and Zephyr operating
systems, and an example configuration matching the HiFivel board from SiFive.
The existing feature-set in combination with the extensibility and configurability of
the RISC-V VP makes the RISC-V VP suitable as foundation for various application
areas and system level use-cases, including early SW development and analy-
sis of interactions at the HW/SW interface of RISC-V based embedded systems
(e.g. found in [39, 40, 44, 46]). The evaluation demonstrated the quality and
applicability to real-world embedded applications as well as the high simulation
performance of the RISC-V VP. Finally, the RISC-V VP is fully open source to
stimulate further research and development of ESL methodologies.

56

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.2 Virtual Breadboard - Advanced Environment
Modeling GUI

This section includes and extends published material from the conference pa-
per [39] and the subsequent journal extension [40].

It is started by a motivation to this topic in the following paragraph, continued
by a discussion of related work (Subsection 3.2.2) and an outline of relevant
background information. Next, the VP-driven environment modeling method-
ology is presented in more detail, including the communication interfaces and
configuration features (Subsection 3.2.4). Following up, the rapid prototyping ap-
proach using the dynamic Lua scripting language is introduced in Subsection 3.2.5.
Then, the modeling case-studies with two different environment configurations are
described using the proposed architecture (Subsection 3.2.6.1). Afterwards, the
results of the performance evaluation are discussed (Subsection 3.2.6.2). Finally,
after an outlook on future work (Subsection 3.2.7), the proposed approach is
concluded in Subsection 3.2.8.

3.2.1 Introduction

As stated earlier in Section 2.3, RISC-V [16, 17] is a modern ISA that gained
significant momentum in the recent years. A key factor that drives the RISC-V
success story is its free and open nature combined with a lightweight and modular
architecture. Moreover, RISC-V is designed from the ground up to enable inte-
gration of custom instruction set extensions in order to build highly application
specific solutions. These properties push the adoption of RISC-V and strengthen
its potential to become a game changer in the IoI era. As such, great interest can
be observed around RISC-V in industry and academia.

In line with the RISC-V popularity, the extensive RISC-V ecosystem is continu-
ously growing to include a broad set of software and hardware development tools
and library. As stated in Section 3.1, a key property of VPs is their binary com-
patibility with the hardware platform, i.e. from the software perspective the VP
provides the same interface as the hardware platform and hence the software can
be executed unmodified on the VP and hardware. Beside a functional validation,
VPs also enable design space exploration by evaluating different design decisions
early in the design flow.

The binary compatibility, however, is not enough for embedded systems:
Program control flow usually also depends on values and behavior of input and
output devices like sensors and actuators that may not be a part of the SoC. As
these devices are often are a critical part of the embedded system as a whole, there

57

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

exists the need for design space exploration, testing and validation of the complete
system as early as possible.

The RISC-V VP is a representative, advanced open source VP tailored for
RISC-V and available at GitHub [49] and has been described in Section 3.1. It
provides an extensive feature set, such as support for the 32 and 64 bit RISC-V ISA
with all standard instruction set extensions, several operating systems (such as
Zephyr and Linux), advanced debugging capabilities and configurations to create
different platforms such as the HiFivel board from SiFive [92]. The main benefit
of the RISC-V VP is, however, its ease of expandability: from custom RISC-V in-
structions with dynamic data-flow analysis extensions [45], over HW-intrinsic [44]
or SW-centric [34] visualization, to a symbolic execution engine [90]. However,
the RISC-V VP previously was missing an effective methodology to design and
integrate models that capture the interaction of the VP with the environment, such
as other components on a PCB besides the processor chip.

In this section, such an extension is proposed and described to broaden the
application domain for virtual prototyping in the RISC-V context. Also, a set of
building blocks for the environment is provided which includes buttons, LEDs,
and a display. The main idea of the approach is to separate the hardware-
model from the world behavior (see Figure 3.4, VP Environment vs. RISC-V VP).
This allows for the parallel development of software and hardware, within the
intended environment, speeding up the design process. For visualization of the
environment, a GUI using the Qt C++ library is proposed. To ease the environment
setup, a configuration-file based approach has been chosen, which enables the
designer to specify the desired components and appropriate connections to the
VP in a simple way. Additionally, it is possible to instantiate, connect and modify
new devices for an interactive user experience. The communication channel
between the RISC-V VP and Environment Model GUI is established through a TCP
connection, which also enables to distribute the simulation to different computers
e.g. a simulation server and a user’s desktop PC. Appropriate libraries are also
provided to tunnel several hardware communication interfaces such as GPIO, SPI,
UART, or Controller Area Network (CAN) (via SPI) on top of the TCP channel.
This allows to transparently map these interfaces between the VP, which models
the SoC, and the Environment Model GUI, which displays and simulates the
behavior of external components. Furthermore, the communication is optimized
to avoid performance impacts on the VP simulation. This proposed approach is
designed, but not limited, to be integrated with SystemC-based VPs that leverage a
TLM communication system. In addition, the setup provides a foundation to even
attach external real hardware components to perform a VP-driven hardware-in-
the-loop simulation, which is described in more detail in Section 3.4. To facilitate
the environment model design, a set of building blocks, such as buttons, LEDs

58

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

and an OLED display, are already implemented. Moreover, for rapid prototyping
purposes, a modeling layer that leverages the dynamic Lua scripting language is
employed to design and integrate components faster with the VP-based simulation.
Finally, two case-studies with different virtual environments are provided for
evaluation. In all case-studies, the RISC-V VP in the HiFivel configuration is
used, which is a model of the RISC-V HiFivel board from SiFive [92], which was
introduced in Figure 3.2. Beside the two virtual environments, the corresponding
two real physical systems were also built for comparison. It could be observed
that both the virtual and physical systems behave identically in these case-studies,
which demonstrates that the proposed approach provides suitable virtual models
to enable early software development in the design flow.

Besides positive experiences in using the RISC-V VP platform for teaching
lectures on system-level design and virtual prototyping, also other academic
groups are known to leverage the RISC-V VP infrastructure for teaching embed-
ded systems lectures with laboratory sessions in the RISC-V context [42]. This
further underlines the applicability of the RISC-V VP platform with environment
modeling capabilities for educational purposes. To further spread its adoption, the
environment interaction GUI in combination with the case-studies is provided as
open source [49].

3.2.2 Related Work

The extensive ecosystem of RISC-V comprises several simulators that differ in their
implementation technique and intended purpose in order to cover different use-
cases. SPIKE is the reference simulator that is mainly designed for pure CPU
simulations with a basic set of peripherals [65]. RV8 is a high-speed simulator that
employs just-in-time compilation techniques to boost the execution performance
but also mainly covers pure CPU simulations [80]. R2VM also targets CPU
simulations by utilizing binary translation techniques [102]. It can switch between
fast and accurate simulations in order to cover different use-cases. QEMU enables
full system simulation that covers a complete platform and employs advanced
binary-level optimization techniques to achieve a high performance [64]. Building
on that, [103] proposed an approach to efficiently simulate Translation Lookaside
Buffer behaviors in a QEMU setting. Gemb5 is also a full-system simulator that puts
a stronger emphasis on architectural exploration aspects but has a significantly
reduced performance as a trade-off [82, 104]. Going beyond that, the Renode simu-
lation system supports multi-node networks of embedded systems in a distributed
simulation [83]. Recently, SystemC-based processor simulation solutions have
been introduced into the RISC-V ecosystem as well. Besides the RISC-V VP, which
was previously covered in Section 3.1, viable alternatives are the DBT-RISE [81]

59

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

framework, ETISS [105, 106], and the RISC-V-TLM [107] instruction set simulator
which are also designed with a SystemC integration in mind and provide RISC-V
support. They lack however a way to model external devices, e. g. via SPI or GPIO.
Regarding DBT-RISE, an example VP platform which integrates a RISC-V instruc-
tion set simulator and is implemented in SystemC TLM is provided [108]. Another
SystemC TLM simulator for RISC-V is RISC-V-TLM [107], which is currently under
active development to increase the supported core feature set. A recent approach,
that has been build upon the RISC-V VP, proposed visualization of internal VP
execution state for debugging purposes [44]. It offers a live view into the execution
state of the SystemC peripherals but lacks an interactive modeling platform for
the environment interaction. However, the freely available VP-based frameworks
for RISC-V are currently missing an effective methodology to design and integrate
configurable environment models with extensive graphical capabilities. Advanced
environment modeling capabilities in a configurable framework with extensive
graphical capabilities, as is described in this section, is not yet available by any of
the open RISC-V virtual prototyping approaches. Finally, there are commercial VP
tools such as Synopsys Virtualizer [109] that might support RISC-V in combination
with extensive environment modeling capabilities, but their implementation is
proprietary.

Looking beyond RISC-V devices, existing simulators like simavr [110] and
PICSimLab [111] (using simavr in the background) can be cycle-accurate but
are limited to a certain family of AVR processors, and are fairly computationally
expensive.

In contrast to the proposed approach, which offers an interface to a SystemC
VP and hence is able to incorporate custom in-house chips and IPs, the other sim-
ulators are not designed with advanced industry-proven SystemC-based virtual
prototyping in mind.

3.2.3 Embedded Systems: Components and Interfaces

As briefly introduced in Section 2.1, the GPIO module is in most embedded devices
the interface to the outside world. It drives the physical pins of the chip or
interprets applied voltage as logic inputs, but can also be configured as an interface
to other on-chip peripherals. These peripherals depend on the instance of the
SoC and may include digital data interfaces (e.g. UART, SPI, ADCs) or timer-
controlled PWM outputs. Aside from active polling, the CPU may also enable
hardware interrupts that trigger when, e. g., the input state of a pin changes. This
way, the CPU may work on other threads and only be notified via the Platform
Local Interrupt Controller (PLIC) on a state change, initiated by the GPIO module.

60

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.24 VP-driven Environment Modeling

In this subsection the proposed approach is presented. First, the main software
architecture components of the modified RISC-V VP and the new VP Environment
Model GUI (Subsection 3.2.4.1) are introduced. Then, Subsection 3.2.4.2 gives
a more detailed look at the communication between SystemC modules and the
new GPIO server; and between the two executables. Lastly in Subsection 3.2.4.5,
the details of the Environment Model GUI and the currently available, place-able
objects are shown.

3.2.4.1 Architecture Overview

SystemC domain
~_Hardware behav1our

PR SSSSSSSS

VP-Env GUI |}, RISC-V VP

A

= %] | | | PLIC |~ CPU

Drawing | |HID Input| (| | " ~'™~ | | “~1 M

A : l uis \ o} __'t’l_E_'f{'_C_’_E*_Y__:i
Environment Model SP|]@’l GP'O

X

GPIO Client ‘4 >r GPIO Server

Figure 3.4: Main architecture of the virtual environment system. Elements
highlighted in green define the hardware behavior through the SystemC domain
language (simplified for readability). The contents of the VP’s memory define
software behavior, highlighted in blue. On the left side is the VP Environment
Model GUI, which provides the interface to interact with the user. The behavior of
outside components is combined in the environment model with its configurable
set of devices, highlighted in orange.

Figure 3.4 shows an overview on the proposed approach. It consists of two
standalone executables: The modified RISC-V VP and the new VP Environment

61

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Model GUI. The RISC-V VP is organized in the SystemC domain (the hardware
model residing in simulation time, highlighted in green) and the GPIO server (bot-
tom right). The SystemC peripherals relevant to this work and their interactions
will be described in more detail in Subsection 3.2.4.2.The GPIO server interfaces
between the SystemC GPIO peripheral to the environment model in physical (i. e.
wall clock) time, highlighted in yellow.

The VP Environment Model GUI (VP-Env GUI, on the left side) consists of
the GPIO client (bottom left), the environment model and the QT modules for the
GUI The GPIO client is responsible for getting and setting the pin states to the
simulated hardware (the RISC-V VP), while the environment model (highlighted
in orange) models the world behavior based on the configured devices and user
input (see Subsection 3.2.4.5). The protocol between the GPIO client and the GPIO
server is described in more detail in Subsection 3.2.4.4. The environment model
that manages the devices like buttons, LEDs, etc., and their respective connections
to individual pins, is shown in Subsection 3.2.4.5. The QT interface modules
handle the drawing functions and distribute keyboard /mouse input events to the
respective environment components and is not shown in this work for brevity.

3.2.4.2 VP Peripheral Interfaces

As the GPIO peripheral resides in the user-space scheduled SystemC threading
scheme, an interface to the asynchronous “real time” world is needed. This inter-
face is modeled in the form of the GPIO server, which accepts TCP connections from
a GPIO client to receive and send pin status updates. To minimize the dependency
of the VP to the environment simulation, the server does not act (and thus impose
an execution overhead) when no client is connected. Furthermore, the GPIO client
in the environment simulation performs active polling on the server, where it
sends changed pins on the environment side and requests the current status on
VP-side. This way, the execution overhead on a running VP with environment
simulation is minimized at the cost of missed changes that happen between the
update cycles. With LEDs and buttons that interact with humans this is usually
enough, but this loss of information would disable fast digital transmissions like
SPI communication. This is why, when the GPIO peripheral is configured to do so,
the GPIO server and client will transmit their respective payload either in a best-
effort manner or synchronously. For digital communication interfaces like SPI, the
approach abstracts the underlying protocol and directly transmits the payload to
enable lossless communication and a faster simulation time.

62

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.2.4.3 SystemC Peripheral Interface

The GPIO peripheral is accessed through the device’s bus (Figure 3.4, @) where
it can be configured and read by the software running on the CPU. It has an
asynchronous (with respect to the CPU clock) interrupt line @ to notify the PLIC
(and thus the CPU later) when a configured input triggers, and lastly a direct
interface from the SPI peripheral ® where the payload bytes are sent directly into
the GPIO interface.

“Outside” pin changes (from the VP Environment Model GUI) are handled by
using SystemC AsyncEvent s to notify the synchronous (with respect to SystemC
simulation time) GPIO thread of pin changes @, which in turn notifies the PLIC if
an interrupt is configured for the corresponding change type.

3.2.4.4 GPIO-Protocol

SPI
Peripheral

GPIO GPIO
Client Server
(:) getState() 3
state
setPin(nr, Tristate)

SysC sync }

Lua Device
OLED

enable SPI
& on pin 2
1< From config:
- Place’= spionpin2 ’ writeByte (byte)

<—/H @

From CPU:

response(Q)

—Tequestiof(z, ser)
k (channel_ID)

<_0/’
i byte)
sendByte(channel_ID, byte) writeByte(by

spi(byte) writeByte(byte)
N

response(byte N
(:) yte) response(channel_1p, byte) response(byte)

Figure 3.5: Example sequence diagram of the GPIO-Protocol. The dashed line il-
lustrates that the getState () and setPin(...) functions are continued regularly
in the background.

Upon startup, the GPIO server opens a TCP socket and listens to incoming
connections from the GPIO client. The GPIO client in the virtual Environment
Model GUI then connects to the server and begins polling with a getState

63

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

command to request all pin states (see Figure 3.5, @). The response is a list
of states for all pins that may assert either direct values (LOW, LOW_WEAK, HIGH,
HIGH_WEAK and FLOATING), or any of the current supported IO-functions: SPI,
SPI_NORESPONSE, BITSYNC, PWM and reserved future functions like UART and I2C. If
an environment device (such as a button) sets a pin, it is always sent immediately
over the channel (Figure 3.5, @). Note that this happens throughout the execution
of the environment in regular intervals, indicated by the dashed line after @.

The GPIO client also may request an IO-function channel, in which case the
GPIO server will generate a unique channel ID (Figure 3.5, ®) and opens (if not
already existing) a second TCP socket, to which the GPIO client will connect (not
shown in Figure 3.5 for brevity). If some on-chip peripheral writes to one of the
GPIO IO-function inputs, but the corresponding pin is not yet “tracked” by the
GPIO client, the GPIO peripheral will discard the message. Additionally, in case
of a two-way protocol, it will respond as if no device was connected (e.g. a zero
for SPI, Figure 3.5, @). If the pin has an already registered channel, the datum
is transmitted to the GPIO client, with the actual response forwarded if needed
(Figure 3.5, ®).

Note, that in case of SPI, there is also the SPI_NORESPONSE mode (unidirectional)
which can be requested by the GPIO client, in where the response phase is omitted
by the GPIO client and the server will continue to respond directly with a zero.
This is especially useful for devices that do not implement a response anyway, to
further reduce the overall latency.

3.2.4.5 VP Environment Model

In order to support the design process to build an environment model with the
accompanying GUI, a set of building block components which can be re-used
across different environments is provided, while the GUI supports settings and
placement via a configuration file. In the following, both aspects are described in
more detail.

C++ Building Blocks As an overview, five ready-to-use C++ components are de-
scribed as building blocks to support the design engineer in building environment
models:

e Button: Simple input area on screen that changes its state by mouse click or
button press and sets/resets a pin value.

e LED: A colored light spot that changes its brightness from transparent to a
configured color tone, depending on a pin input value. This value can either
be binary (on/off) or a PWM ratio sent as float.

64

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

e Red Green Blue (RGB) LED: An extension to the regular LED, for conve-
nience directly mixing the three colors.

e Seven segment display: Arranged color lines with background of a config-
urable size, connected to up to seven input pins.

e Display: An SSD1306 SPI OLED display with internal state machine, con-
nected to one of the digital SPI inputs and two pins for slave select and
data/command switch.

Besides this set of C++implemented components, the Environment Model
GUI architecture is designed to be extensible and, as such, adding additional
components to increase the toolbox is fairly easy. For rapid prototyping purposes,
a Lua-scripting interface is also provided for modeling devices, as explained in the
following Subsection 3.2.5.

3.2.4.6 Drag and Drop

The drag and drop functionality is based on QT’s QTDragEvents. For the simu-
lated connections between devices and to the controller board, a visual and an
underlying logical representation is kept redundantly. So when adding a device
or wire and connecting it to a row in a breadboard (as in Figure 3.9), the (possibly
cascaded) path is resolved once and saved as a 1:1 lookup-table, in order to reduce
per-frame computational cost. Adding a new device is easily done with a right-
click context menu on the screen (see Figure 3.6a) and selecting one of the currently
loaded devices. A wire is created by simply starting a drag from one pin-position
(on the PCB or breadboard) and releasing it on another. As some devices offer
on-click callbacks (cf. Figure 3.7), moving existing devices is only possible in the
drag-mode, switched with pressing the space bar on the keyboard. To distinguish
the modes, every drag-able object is highlighted in transparent red visually when
in drag-mode.

The placed devices also offer a context menu to alter settings, by right-clicking
on them in any mode (see Figure 3.6b). These offer all the settings that will
be discussed in Subsection 3.2.5. Additionally, when the model does not have a
breadboard but “invisible” PCB traces, the pin connections are set in this menu.

65

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Device Configuration X

Add Device button_lua
RTC_0815
DHT22

Config | Keybinding | Pin Connections

Up Delete
bme280
SsD1106

sevensegment
- Eww - - rgb
" - w oled
button
Connected Ty
(a) Device add (b) Configuration window

Figure 3.6: Context menus of the Environment Model GUI. Figure 3.6a demon-
strates a list of devices to be added, and Figure 3.6b shows a settings-window of
a button that offers to bind new keys to the button, as well as changing the pin-
connections and the device-specific configuration elements.

3.2.5 Rapid Prototyping using Lua Scripting

To increase the usability of the RISC-V VP and Environment Model GUI, a device
scripting engine is provided. This allows developers to focus on the actual behavior
of devices, without having to understand the whole system, to not have to re-build
the framework for each change in a device, and to increase modularity for an easier
community-driven library of devices.

Such a scripting engine has to be fast, memory efficient, and easily learn-
able. Without a particular scientific relevance, Lua was chosen as the driving
scripting language; as it is widely used in games and other applications where
execution speed and a low memory footprint is key. While the Python language
was considered, as is being used widely nowadays in more high level applications,
its interpreters for C/C++ programs compare rather laborious and (slightly) slower.

For the interface between Lua and C/C++, it proved to be beneficial keeping
the dynamically typed language style, and thus activating offered interfaces in
a “duck typing” way. This means, if a script is loaded, it is checked whether
it implements certain functions that are expected by the framework. These can
then be used by the configuration mechanism to enable/connect the following
currently implemented functions: SPI, Pin input/output, Configuration change,
Button/Mouse input, and Graphics. In Figure 3.7, a brief overview of the interface
registry is shown. On the right side, the Lua tab, the functions to be implemented
are grouped by their interfaces (colored). Highlighted in bold are the necessary

66

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Platform Device Lua
; implementsInterface classname = "DHT22"
registeredSPIchannels; ©SPI()
registeredPINchannels; SPIN() receiveSPI (byte)
; «Config() return ...
© () end
spi->sendByte (byte) ; getPinLayout ()
pin->setPin(val) ; setPin (num)
e @ pin->getPin() ; getPin (num, val)
R AT N conf->getConfig () ;
] ,,:clifss vsonsl conf->setConfigElem () P~ getConfig ()
'_‘ "spi { ’ . draw->getLayout () ; setConfig(list)
J "cs_pin" : 15, % draw->registerSetBuf(...);
"noresponse" : true ‘,:' getGraphbufferLayout ()
s } ¢ @ initializeGraphBuffer ()
setGraphbuffer (x,y,Pixel)
"synchronous": true “.

config.json

Figure 3.7: Available device interfaces for Lua scripts. In the Lua tab, highlighted
in bold, are the minimum necessary functions for each interface. Not shown is the
Button/Mouse input interface with the functions onClick(active) and onKey
press(code, active) for better readability.

functions for each interface to be recognized by the Device wrapper (central tab).
Note that the Graphics interface is special, which will be discussed in the following
paragraphs.

Upon instantiation, the device wrapper will check for existence of these func-
tions and add the corresponding interfaces to the C++-world. The Platform then
instantiates and stores all devices listed in the configuration file (bottom left). For
each of the interfaces, a central registry is held for all devices, to speed up the
lookup each frame.

A Lua scripted device may implement a set of functions and at least have a mem-
ber classname which is used to identify and instantiate this device (see Figure 3.7).
For pin input/output, it has to implement at least the function getPinLayout(),
in where it defines the number of input or output pins during the instantiating
setup phase (see also Figure 3.8).The host system will then periodically call
getPin(num) (if implemented) to request updates, and setPin(num, val) if
registered and connected pins are updated from outside the device. A pin in
updated asynchronously (i.e. only when the Environment Model GUI updates,
see Subsection 3.2.4.4) per default, unless the environment configuration sets it
as synchronous. This is to save bandwidth and performance. Normal, asyn-

67

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

chronously sensitive, pins are registered in the reading- and writingPINs data
structures, while synchronous pins are handled in the registeredPINchannels
data structure, as it is considered as an IO-function internally. SPI connections are
handled by implementing receiveSPI(byte) and is called synchronously when
the device is connected to an SPI port and received something. Note, that the
function may return a value that is passed back to the processor, if not configured
in SPI_NORESPONSE mode.

If the device implements the setConfig(list) functions it may receive con-
figuration updates in form of a key-value list during setup from the json config file.
Additionally, it may implement getConfig() , from where the (default) settings
may be viewed and reconfigured in the GUIL For GUI interactions (Button/Mouse
input), the device may implement onKeypress(keycode, press_release) or
onClick(press_release) . Note that for onClick, a graphical representation is
needed.

The interface for Graphics is a bit more interesting, as the Environment Model
GUI offers functions to the device once it defines the getGraphbufferLayout ()
function. During setup (Figure 3.7, ®), the GUI calls this function and reserves
a memory region with the requested image size and format (currently only
RGBA8888), and inserts the callback function(Figure 3.7, @) get- and setGraph
buffer(x,y,Pixel) which directly access the internal image buffer. A Pixel isa
custom data type that combines red, green, blue and alpha values. These functions
may be called by the device during all callbacks (Figure 3.7, ®).

Due to technical reasons, all scripted devices run in one single Lua interpreter
state as scoped chunks for the best memory and execution speed?. This means
that a script is loaded into a table, in where it only may access pre-defined global
functions without access to the other script’s functions. All devices may call set
Graphbuffer(..) , but they may only access their own buffer. To enable this, this
approach uses prefixed global® C functions (e.g., buttonl_setGraphbuffer(..),
Listing 3.8, Line 10). These are inaccessible for the scoped device scripts (chunks),
until it is inserted into the respective Lua meta-table (Listing 3.8, Line 21), and
without the prefix.

3.2.5.1 Configuration

The Environment Model GUI loads a json-formatted configuration file on start-
up for ease of customizing the user interface. An example is shown in Subsec-

ZFarly tests have shown that instantiating one Lua-state per device results a prohibitively high
memory usage already in small numbers of devices, and also significantly reduces the execution
speed.

3This is a technical limitation of the used LuaBridge3, in where C functions may only be global.

68

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 template<typename FunctionFootprint>
2 void LuaDevice::Graphbuf_Interface::registerGlobalFunctionAndInsertLocalAlias(

3 const string name, FunctionFootprint fun) {

4 if (m_deviceId.length() == || name.length() == 0) {

5 cerr << "[Graphbuf] Error: Name '" << name << "' or prefix '"

6 << m_deviceld << "' invalid!" << endl;

7 return;

8 }

9

10 const auto globalFunctionName = m_deviceld + "_" + name;

11 luabridge::getGlobalNamespace (L)

12 .addFunction(globalFunctionName.c_str (), fun)

13 g

14

15 const auto global_lua_fun =

16 luabridge::getGlobal (L, globalFunctionName.c_str());

17 if (!global_lua_fun.isFunction()) {

18 cerr << "[Graphbuf] Error: " << globalFunctionName << " is not valid!" <<
<~ endl;

19 return;

20 }

21 m_env [name.c_str()] = global_lua_fun;

22 };

Listing 3.8: Mechanism for unique global C-functions that are inserted into the
Lua-script’s metatable m_env as prefix-less references.

tion 3.2.5.1. In the window section, a background image (Line 3) and a desired
window size (Line 4) can be defined (which defaults to the background image
size).

After that, all implemented / loaded device classes may be referenced and
instantiated in the devices section (Line 6). A device entry must have a class
and an id (Lines 9 and 10). The class references the building blocks classname
(see Subsection 3.2.5), while the id must be a unique name to the instance. Further
items depend on the implemented interface of the specific building block (see
Figure 3.7). For example, a Lua-implemented button button_lua offers the
graphics (Line 11), onKeypress (Line 16), and pin (Line 17) interface. The
OLED device (Line 44) was implemented in both Lua and C++, with the latter being
instantiated in this example.

1 { 12 {
2 "window" : { 13 "offs" : [77, 625],
3 "background" : 14 "scale" : 2

— ":/img/oled_shield. jpg", 15 i
4 "windowsize" : [470, 750] 16 "keybindings" : ["DOWN"],
5 To 17 "pins"
6 "devices" : 18 [
7 [19 {
8 { 20 "device_pin" : 1,
9 "class" : "button_lua", 21 "global_pin" : 19
10 "id" : "button_up", 22 }
11 "graphics" : 23]

69

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

24 Fo 55 "global_pin" : 16,
25 { 56 "name": "dc_pin",
26 "class" : "button_lua", 57 "synchronous" : true
27 "id" : "button_down", 58 }

28 "graphics" : 59 4 5

29 { 60 "graphics" :

30 "offs" : [220, 580], 61 {

31 "scale" : 2 62 "offs" : [105, 308],
32 Ig 63 Dgeaile? g 2

33 "keybindings" : ["DOWN"], 64 }

34 "pins" : 65 g

35 [66 {

36 { 67 "clags" : "LED",

37 "device_pin" : 1, 68 Dgie1D : "led1l_down",
38 "global_pin" : 4 69 "pins"

39 } 70 [

40] 71 {

41 }, 72 "device_pin" : 1,
42 [...] // other buttons 73 "global_pin" : 3,
43 { 74 "name": "led_pin"
44 "class" : "SSD1106", 75 T

45 "id" : "display", 76 1l o

46 "spi" : 77 "graphics" :

47 { 78 {

48 "cs_pin" : 15, 79 "offs" : [435, 655],
49 "noresponse": true 80 "scale" : 2

50 i 81 }

51 "pins" 82 }

52 [83]

53 { 84 }

54 "device_pin" : 1,

Listing 3.9: Excerpt of an example configuration file for a PCB with an OLED
display, used in Figure 3.10b.

3.2.5.2 Scoping layers

To increase modularity in the whole HW stack from device to SoC peripheral, the
Environment Model consists of four layers: The device layer, the environment layer, the
platform layer, and the GPIO layer in the GPIO peripheral of the VP (see Figure 3.8).
The device layer is scoped to every individual device, which define the pin and other
protocol descriptions according to their respective interfaces (see Subsection 3.2.5).
In the environment layer, all instantiated devices are connected to the global pin
identifiers. This would normally be done in a prototyping breadboard or a PCB. It
is allowed to not connect pins. The pins between the labeled “global” connectors of
a platform (like the HiFive 1) into the chip’s GPIO register offsets are translated in
the platform layer. Lastly, in the GPIO module that resides in the VP, the actual pin
states are set/read according to Subsection 3.2.4.4 and can either contain per-pin
managed digital levels (see Subsection 3.2.4.3) or pass through to an IO-function
like SPIL.

70

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

classname = "Example" "class" : "Example", GpioPin translate(PlatformPin nr) enum class Pinstate : uint8_t {
"id" : "testl", { UNSET = 0,
function getPinLayout () "pins" ¢ [{ if (nr < 8) { Low,
return { "device_pin" : 1, return GpioPin{nr + 16}; HIGH,
wy " " " "global pin" : 18, } /o
E' ..?nputy. ’ "?at?)}' "name": "a_pin" if (nr >= 8 && nr < 14) IOF_SPI = START OF IOFs,
3 Jpout” o Too bt return GpioPin{nr - 8}; I0F_12C,
3, output”, "bar"} "device pin" : 2, // ignoring non-wired pin 14 IOF_PWM,
} "global pin" : 16, if (nr > 14 && nr < 20) { IOF_UART,

end "name": "another pin" return GpioPin{nr - 6}; } register states[NUM_PINS];
I }
[...] return GpioPin::invalid;
1 }

in

GPIO

SPI

inout 2

v
ﬂﬂqﬂd@ﬂﬂn

{1 i [

Figure 3.8: The four layers of scoping for connections from the individual environ-
ment device to the actual register contents of the GPIO peripheral in the VP.

3.2.5.3 Example Devices

To explain the concept better, the following paragraphs show two of the currently
implemented devices in more detail: A simple red LED (see Listing 3.10) and a
more complex OLED display (Listing 3.11).

LED The LED implementation in Listing 3.10 uses the pin, config, and graphic
interfaces. In Lines 3 to 6, the module defines only one pin with the number 1 as an
input pin and the description string of 1ed_on. Lines 8 to 11 request only one color
pixel from the graphics system, which is accessed later via setGraphbuffer (0,0,
...) onLines 32 and 34. Lines 13 to 15 define local variables for the displayed color,
which are set or read by the configuration file or during runtime via getConfig()
and setConfig(conf) in Lines 17 and 23, respectively. The actual display action
happens if the input pin (1) is changed (Lines 29 to 37). The call supports multiple
pins, so setPin(...) includes the pin number and the (boolean) value if it is HIGH
or LOW.

SSD1103 OLED Display In Listing 3.11, a more sophisticated example is given.
It implements the already known pin interface, but also the SPI interface with the
function receiveSPI(byte_in) (Lines 62 to 89) Note that, for brevity, some of the
internal logic is omitted (Lines 50, 64, 83). In Lines 38 to 47, the most common op-
erator bytes are defined. The omitted function getMask(op) determines the value

71

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

classname = "LED"

function getPinLayout ()
-- number, [input | output | inout], name
return {1, "input", "led_on"}

end

OO Ul W~

function getGraphBufferLayout ()
-- z width, y width, data type
return {1, 1, "rgba"}

end

e
W N = OO

255
10
0

local r
local g
local b

=
N Ul =
wonu

—_
N

function getConfig()
return {{"r", r},
{"g"’ g}’
{"b", b}}

NN ==
= O O ®

end

NN
[Vl V)

function setConfig(conf)
r conf["r"] or r
g conf["g"] or g
b conf["b"] or b
end

N NN NN
0 N O U1 =
o n

N
e}

function setPin(number, val)
if number == 1 then
if val then
setGraphbuffer (0, 0, graphbuf.Pixel(r, g, b, 255))
else
setGraphbuffer (0, 0, graphbuf.Pixel(r, g, b, 0))
end
end
end

W W W WWWWwWw
NS Gk WO~ O

Listing 3.10: Simple one-pixel LED model with Lua

bits of an input command byte, which is then used by the match(cmd) function
(Lines 53 to 60) to decode incoming raw bytes. Lastly, in receiveSPI(byte_in)

(Lines 62 to 89), the actual drawings to the frame buffer are done when the
incoming SPI byte is detected as data (if the data_command pin was set HIGH).
In Lines 63 to 71, the translation from 1-bit-pixel rows to the pixelwise frame
buffer is done, including the increment of the current column pointer. Some of
the command handling is shown in Lines 71 to 87, where internal state variables

are changed.

72

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

classname = "SSD1106"

function getPinLayout ()
-- number, [input | output /| inout], name
return {1, "input", "data_command"}

end

OO Ul W~

local width = 132
9 local height = 64

11 function getGraphBufferLayout ()
12 return {width, height, "rgba"}
13 end

15 local isData
16 local state = {

17 column =0,

18 page =0,

19 contrast = 255,
20 display_on = true
21 }

22

23 function setPin(number, val)
24 if number == 1 then
25 isData = val

26 end

27 end

28

29 -- optional

30 function initializeGraphBuffer ()
31 for x = 0, width-1 do

32 for y = 0, height-1 do

33 setGraphbuffer(x, y, graphbuf.Pixel(0,0,0, 255))
34 end

35 end

36 end

37

38 operators = {

39 COL_LOW =0 ,

40 COL_HIGH = 0x10,

41 PUMP_VOLTAGE = 0x30,

42 DISPLAY_START_LINE = 0x40,
43 CONTRAST_MODE_SET = 0x81,

44 DISPLAY_ON = 0xAE,

45 PAGE_ADDR = 0xBO,

46 NOP = OxE3

47 '}

48

49 function getMask (op)

50 Lo ood

51 end

52

53 function match(cmd)

54 for key, op in pairs(operators) do
55 if ((cmd ~ op) & getMask(op)) == 0 then
56 return op, cmd & (~getMask(op))
57 end

58 end

59 return operators.NOP, O

60 end

61

62 function receiveSPI(byte_in)
63 if isData then
64 [Coo0od

73

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

65 for y = 0,7 do

66 if (byte_in & 1 << y) > 0 then pix = 255 else pix = 0 end
67 setGraphbuffer (state.column, (state.pagex*8)+y,

68 graphbuf.Pixel (pix,pix,pix, state.contrast))
69 end

70 state.column = state.column + 1

71 else

72 op, payload = match(byte_in)

73 if op == operators.DISPLAY_START_LINE then

74 return 0O

75 elseif op == operators.COL_LOW then

76 state.column = (state.column & O0xf0O) | payload

77 elseif op == operators.COL_HIGH then

78 state.column = (state.column & 0x0f) | (payload << 4)
79 elseif op == operators.PAGE_ADDR then

80 state.page = payload

81 elseif op == operators.DISPLAY_ON then

82 display_on = payload

83 [...]

84 else

85 print ("unhandled operator " .. byte_in)

86 end

87 end

88 return O

89 end

Listing 3.11: Simple SPI OLED driver model with Lua

3.2.6 Evaluation

In this section, some use-cases for the Environment Model GUI are featured
by modeling two example environments along with their interacting software
(Subsection 3.2.6.1), give a performance evaluation of different modeling strategies
(comparing to the baseline RISC-V VP, Subsection 3.2.6.2), and lastly a short
demonstration on how it was used in lectures (Subsection 3.2.6.3).

3.2.6.1 Modeling Case-Studies

The implementation of the proposed approach for VP-driven environment model-
ing and interaction in the RISC-V context was done using the previously described
RISC-V VP as foundation (cf. Section 3.1). To demonstrate the effectiveness of
the proposed approach in building feature-rich environments, two example en-
vironments were designed in combination with different firmware applications
as a case-study. In the following, both case-studies are presented in more detail
(Subsection 3.2.6.1 and Subsection 3.2.6.1).

Breadboard Environment To demonstrate the usability of the proposed ap-
proach as a rapid prototyping methodology, a custom breadboard environment
is featured with a configured button, an LED and a seven segment display, as well
as the built-in RGB-LED of the HiFivel board. An excerpt of the corresponding

74

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

configuration file can be found in Subsection 3.2.5.1. The corresponding graphical
display of the environment is shown in Figure 3.9. Beside the already mentioned
components, the environment also displays the connection between the respective
GPIO pins of the HiFivel and the breadboard. During the VP-driven simulation,
the Environment Model GUI is updated accordingly to reflect the current execution
state of the RISC-V VP.

1353 DIvm

Figure 3.9: Image of the virtual breadboard environment with a button, a red LED
and a seven segment display on the breadboard, and the builtin RGB-LED on the
HiFivel. The connections to the seven segment display are omitted for readability
reasons.

The firmware is held simple in this example: It counts a number in seconds using
the CLINT timer, and renders it to the seven segment display. Whenever the button
is pressed, the count direction is reversed accordingly. The single LED is changed
every second. Due to the built-in RGB LED segments being always connected to
certain GPIO pins of the seven segment display, its color changes and mixes as well.

OLED Display Shield with Buttons For a more sophisticated example, a hand-
held “gaming” device with seven input buttons and a 64 by 128 pixel wide OLED
screen is presented here. An overview of this system is shown in Figure 3.10, with
the left side showing the virtual environment and the right side showing the corre-
sponding real physical device. The screen is connected via SPI and demonstrates

75

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

the bytewise I/O functions of the GPIO and environment model. The buttons are
connected to ground and require a pull-up resistor on the input pins to work, while
the OLED screen is interfaced via an SSD1306 [112] compatible protocol, consisting
of the usual SPI pins MISO, Clock (CLK), and a Data Command (DC) input.
This interface also demonstrates the requirement of synchronicity between the
abstracted byte-wise SPI transmissions and the GPIO-handled (software driven)
Data/Command (DC) pin*, where a small transmission jitter of the data vs. DC
pin would already result in a glitchy or inoperable display (see also Section 3.3).
An excerpt of the Lua-implementation can be found in Listing 3.11.

To test the interaction between user input and output, a demo snake game was
implemented that listens to the up, down, left and right buttons in an interrupt
routine and draws a gaming field on the screen. With the key mapping of the
Environment Model GUJ, it can be played by clicking on the on-screen buttons or
via the arrow-keys on the keyboard. As the RISC-V VP is binary compatible to the
HiFivel board, the same program could be used and played on the real board, after
the PCB has been manufactured (see Figure 3.10b). For demonstration purposes,
another firmware beside the snake game was built, that displays a Mandelbrot set
visualization on the same device (as shown on Figure 3.10a).

(a) Simulated (b) Real

Figure 3.10: The OLED display shield with an SSD1306 driver and seven buttons,
running the demos from Subsection 3.2.6.2 (Fig. 3.10b) and Subsection 3.2.6.1
(Fig. 3.10a), respectively.

*To optimize the communication protocol, some SPI devices use a separate input pin to incoming
bytes as data or commands.

76

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.2.6.2 Performance Evaluation

For performance evaluation purposes, designed a non-interactive test program was
built that first calculates 40 frames of the Mandelbrot set visualization (see Fig-
ure 3.10a) which uses software floating-point arithmetic to render the fractal. It
then fades the display using the background illumination command, and draws
1000 characters of predefined, randomized text to the screen. After this, the
program exits with a special RISC-V exit sequence that is handled in the RISC-V VP.
This is, of course, not handled by the real processor. While the Mandelbrot set
visualization is computationally intensive, as every pixel is calculated individually,
the text stream part is only limited by the SPI-bandwidth as it uses lookup-buffers
for the font and addresses the native 8-pixel-rows per byte.

Also, the SPI OLED display was implemented differently three times: 1. In the
SystemC VP, communicating directly with the SPI device over TLM, sharing only
the screenbuffer over memory-mapped I/O to the GUI; 2. in the Environment
Model GUI as a C++-Device, using the proposed GPIO protocol; and 3. in the
Environment Model GUI as a Lua-Device, using the proposed GPIO protocol (see
Listing 3.11).

The results of this experiment can be found in Table 3.2. The first column describes
the Test type: Baseline (unmodified RISC-V VP with non-functional mock-up GPIO
peripheral); Disconnected (the modified RISC-V VP with the display modeled in
SystemC, but no connection to the environment); and GUI connected (the modified
RISC-V VP with the connected Environment Model GUI actively displaying the
execution state). The connected tests are built in four different set-ups: SystemC-
Device, where the OLED display driver is directly connected to the SPI peripheral in
SystemC sharing the screenbuffer with the Environment Model GUI; Bidirectional
C++-Device where the driver is modeled in the Environment Model GUI and the SPI
peripheral awaits the answer byte via the protocol; Unidirectional C++-Device where
the device’s answer is discarded for speedup; and finally Unidirectional Lua-Device
where the logic of the display driver is modeled in the Lua scripting engine.

The next column, Time, reports the real time as reported by the GNU-binutils
program time of the whole simulation with an already started GUI (if applicable).
#Exec. Instr. refers to the number of native machine instructions (not pseudo-
instructions) executed until test end. Note, that the number differs slightly for the
same binary due to different behavior when the GPIO memory-mapped region
is either mock-up memory (Baseline), correct but disconnected (Disconnected), or
responding to actual SPI devices (GUI connected). Lastly, the amount of MIPS is
calculated, to offer a comparison to other simulation approaches. All tests were
conducted on a desktop grade AMD Ryzen 3700G processor with 32 GiB Random

77

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Table 3.2: Performance overhead test results. GPIO register accesses (read/write):
3025/946. SPI words transmitted: 58 678 (in connected tests).

Test | Time #Exec. Instr. | MIPS

Baseline 27.312s 79392401 2.907

Disconnected 27.617s 79390408 2.875
GUI connected

— SystemC-Device 27917s 79390486 2.844

— Bidirectional C++ Device 32.118s 79390437 2.472

— Unidirectional C++ Device 28.789s 79390491 2.758

— Unidirectional Lua Device 28.654s 79390408 2.771

Access Memory (RAM), and outperformed the real HiFivel setup; especially in
memory intensive tests®, which is usually not possible with RTL models.

As can be observed, a connected and running VP environment has a minimal
impact on the execution speed of the RISC-V VP. Besides the asynchronous
communication scheme, the minimal overhead could be achieved through the use
of a multi-core processor, as the RISC-V VP uses the single-threaded SystemC
reference implementation. Thus, the RISC-V VP and the Environment Model GUI
can be executed in parallel with little to no interference. Secondly, it can be noted
that the implementation of a high-troughput device (like the OLED display) in
the Lua scripting language does not add a significant run-time overhead to the
simulation speed, as long as the response is discarded. Note however, that the
refresh rate of the Environment Model GUI drops slightly®, as Lua devices accesses
to the framebuffer are generally slower because of the C-wrapper (see Figure 3.7).
The overall impact of the proposed approach on execution speed can be observed
against a baseline version of the GPIO peripheral, where any accesses to the
memory-mapped IO-interface are ignored (pass-through to memory). This re-
veals only a 2.2% runtime overhead on average for the benefit of a functioning,
interactive GPIO interface.

3.2.6.3 Educational Tool for Teaching

Among others, a system-level design lecture has been given that also covers
programming embedded systems. During the corona pandemic, there was no
possibility for the students to interact with physical prototype boards like the Sifive
Hifivel. As the students covered implementing their own small VPs, it was easy

5Note that the RISC-V VP has the feature to lock the CLINT's internal timer to either simulation- or
wall clock time.
6Refresh rate in all tests varied between 10 and 20 Hz, limited to 20 Hz.

78

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

to show them the principles of the more complex RISC-V VP. The students then
could use and program the digital version of the Hifivel board to understand the
basic concepts of interrupt handling and how embedded systems interact with
their environment. As the RISC-V VP can be analyzed using normal software-
based debuggers like GDB, the detailed steps of different control flows during run-
time could be shown, and how software and hardware modules interact between
each other. The small exercises were laid out in incremental steps to program an
interrupt-triggered blinking LED while reacting to button presses. One year, the
final lectures could be held in person, where the students could test their own
programs on real Hifivel boards supplied by the university.

Overall, it could be noted that the RISC-V VP along with the Environment Model
GUI, while posing an initial learning curve, was very helpful during remote-
teaching and still nice to have in in-person teaching as every student could test
and build their programs at home without having to supply real hardware. It
can be supposed that it is also be beneficial for more practical-focused embedded
programming courses as in [42]; especially when using hardware that is either too
costly or complex to be supplied to every student or hardware that requires special
programming devices.

3.2.7 Discussion and Future Work

The evaluation demonstrates the applicability of the proposed approach in build-
ing advanced VP-driven environment models for embedded systems efficiently to
enable a full-platform simulation early in the design flow. To further boost this
approach, promising future work can be seen in several aspects:

1. Extend the GUI to build the environment configuration live in an interactive
way instead of using a static configuration file. Moreover, development has
already started in investigating to enable dynamic modifications of the envi-
ronment configuration at runtime in order to facilitate the rapid prototyping
process or for debugging purposes.

2. Combine this approach with advanced VP-based debugging techniques like
the ones mentioned in Section 3.3, that enable to present additional internal
VP run-time information alongside the environment model state.

3. Leverage a VP-driven hardware-in-the-loop integration (as proposed in Sec-
tion 3.4) that allows attaching real physical HW objects to the VP-based sim-
ulation. This would allow mixing virtual and physical environment objects
in an extended reality setting. In addition, it allows a step-wise approach to
refine models and specifically debug certain physical objects by providing
virtual wrappers for the others.

79

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

4. Add a monitor that records the devices behavior and compares it against
wanted behavior. Together with a headless simulation and checkpointing,
this can be used for automated integration tests; essentially closing the loop
for accurate embedded SW testing in Continuous Integration / Continuous
Deployment (CI/CD) systems.

5. Look into techniques to boost the simulation performance of the VP-driven
simulation. In particular integration of just-in-time compilation techniques
seems very promising but requires special attention to be integrated with
a SystemC-based simulation in combination with the environment model
communication.

6. Investigate integration of extra-functional models with the VP-driven simu-
lation to enable fast and accurate estimation of extra-functional properties
like timing behavior and power consumption in a full platform setting. This
requires appropriate interfaces and dedicated techniques for measurement
and synchronization between the VP and environment models.

3.2.8 Conclusion

This section presented an effective methodology for advanced environment model-
ing and interaction for VPs in the RISC-V context to enable the design of advanced
embedded system early in the design flow. It described a library with a set of
building blocks and support for several hardware communication interfaces. For
visualization purposes of the environment, an interactive GUI was designed which
communicates to the VP through TCP connections. The environment model is
specified through a configuration file or can be created on the fly using the GUI
controls to ease the setup and improve the user experience. For rapid prototyping
purposes, a modeling layer was proposed that leverages the dynamic Lua scripting
language to design components and integrate them with the VP-based simulation.
The evaluation with two different case-studies demonstrated the applicability of
the proposed approach in building virtual environments effectively and correctly.
To advance the RISC-V community and stimulate further research, the complete
framework including all case-studies is provided publicly in [48]. The combined
VP platform has also proven to be very beneficial for education purposes in
lectures, as shown in [42] and in the author’s experience with own lectures, and
was featured as the first entry of the Chip Industry’s Technical Paper Roundup: October
2022 [43].

80

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.3 Minimally Invasive SW/HW Co-debug Live Visu-
alization on Architecture Level

The following section includes published material from the conference paper [44].
It is started by a recapitulation of the topic’s motivation in Subsection 3.3.1, directly
followed by an overview into architecture of the proposed approach.

Next, the approach is put into perspective to related work in Subsection 3.3.2,
followed by preliminaries needed to fully understand the approach and the case-
study in Subsection 3.3.3 with building blocks of the proposed tool and the relevant
concepts. More details of RISCview’s architecture and implementation are then
given in Subsection 3.3.4, while Subsection 3.3.5 describes the case-study. Finally,
contributions are summarized with an outlook to promising directions of future
work in Subsection 3.3.6.

3.3.1 Introduction

As mentioned earlier, VPs [38, 113] are important tools for hardware/software co-
design. This section considers VPs typically modeled on the TLM layer, written
in a high-level language like SystemC [4], which abstracts from implementation
details of the hardware. It models the hardware to a level of detail such that it can
execute software that is supposed to run later on the developed hardware. This
way, VPs allow writing software for a target system before the actual hardware is
finalized and produced, resulting in a shorter time-to-market. Additionally, it also
enables effective debugging early in the design process, in particular of the often
complex interplay between hard- and software.

The usage of VPs is not limited to modeling the capabilities of the later designed
hardware, however. This section’s approach leverages the possibilities of a SW
simulation system by gaining insights with a GUI into the simulated HW devices
that would only be possible on real HW with incredibly expensive equipment on
IC scale. Moreover, the developers are able to focus on the internal states of the
individual devices of interest, with the proposed fast and easy-to-use framework
called RISCview. It offers a configurable HW/SW co-visualization with a minimal
impact on the existing code-base by leveraging the model-view principle.

The main architecture is sketched in Figure 3.11. The HW debugging GUI (left
side) is connected via TCP to the executable (right side) consisting of the virtual
prototype and user-defined views of the hardware structure. For establishing the
connection to the debugging GUI, RISCview provides a visualization interface that
is linked into the VP executable. A number of instantiated views (green) define the
data of interest of the existing system’s modules (blue). This model/view scheme

81

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

RISCview Executable
SW Debugger SystemC VP Firmware
GDB i3 CPU Driver
Interface
Module 1| - [Module n App
HW Debug GUI
Nlview Engine View 1l | - | Viewn () System under debug
() Parts provided by RISCview
Command . N User-defined parts for
Translation Layer Visualization Interface O adopting RISCview

Figure 3.11: Architecture of RISCview (in red) together with a system under debug
(inblue). Highlighted in green are the user-defined parts that are necessary for the
adoption.

separates the VP and the displayed information, minimizing the impact of adding
the proposed framework to a virtual prototype. It also reduces the interference
with other automated testing systems. Additionally, areas of interest can flexibly
be highlighted by dynamic reconfiguration of the views without modifying the VP.
The VP exhibits a debugging interface (top left) such that a standard software
debugger like GDB [114] can be used to inspect and manipulate the internal state
of the software that is currently executed on the VP. It allows monitoring variables,
to set breakpoints, etc.

The combination of the HW debugging GUI with a GDB instance for the executed
software gives the user deep insights into and control of the interplay between
HW and SW. RISCview can be used, e.g., to aid the integration process of new
peripherals and matching software drivers into VPs, to visualize the existing
architecture at run-time, and to analyze interrupt and timer correlations.

The proposed tool is evaluated by debugging a HAL for a newly designed OLED-
screen shield for the RISC-V processor board HiFivel [91] (cf. Subsection 3.1.8.3).
The results show clearly that RISCview allows to find bugs in the HW /SW interac-
tion more efficiently than the available alternatives.

3.3.2 Related Work

While debugging tools for later design phases exist both on the software side and
on the hardware side, a lucid and easy-to-use hardware visualization tool for early
virtual prototypes is not available yet. For instance, [115, 116] offer debugging
tools for SoCs at gate level later in the design process. [115] emulate CPU and IPs

82

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

by implementing a GDB interface to an FPGA simulator, while [116] proposes a
debug controller that can be integrated in SoCs on the final silicon chip.

Both Rogin et al. [117] and Grof3e et al. [118] propose SystemC IDEs for low-level
interactions with a focus on the signal layer. These IDEs are incompatible with
transaction-level models and do not offer a live view of the system at run-time.
Since a virtual prototype is a software implementation — in this case using the
C++ class library SystemC -, it is also possible to attach a software debugger
like GDB [114] directly to the virtual prototype and to step this way through
the software model of the hardware logic. Compared to the proposed tool, this
approach has the severe drawback that it shows the variables of the SystemC
implementation, but not a direct view of the modeled hardware; not to mention
of the software that is running on the VP.

In summary, the existing solutions are either too late in the design process, pro-
vide no live view, or are not appropriate for debugging the hardware/software
interaction. The main contributions of this section can be listed as follows:

1. An implementation-agnostic HW/SW visualization,
2. Early visual debug parallel to existing software tools,
3. Alive view of the system’s state during the debugging session,

4. A case-study showing that the proposed approach is well suited for finding
bugs in the interaction of hard- and software.

3.3.3 Preliminaries

In this subsection, the core concepts used in the proposed tool and the following
case-study are explained. It starts with the base hardware board HiFivel that is
simulated, introduces the protocol SPI that is used for device communication, and
gives an overview of NLview™, which is the visualization engine.

Sifive Hifivel Prototype Board For a case-study, the open-source RISC-V VP
(cf. Section 3.1) in its HiFivel mode was extended. This mode emulates the
tinkering board HiFivel of the company SiFive. The processor board comes with
peripherals such as buffered SPI, DMA, and UART, which are all modeled in
the virtual prototype. The VP offers two ways to debug the system: A GDB
connection to the simulated CPU (software side) and a GDB session over the
SystemC executable itself (hardware side). While it is possible to access the
hardware IPs through a GDB session, the effort to gain information of interest is
disproportionate because one has to access variables through the SystemC kernel
with its user-space scheduling. The software GDB module inside the VP, however,
is usable as if the RISC-V binary was executed locally.

83

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

SPI In this case-study, again the Serial Peripheral Interface (SPI) is used which
was briefly introduced in Section 2.1. This protocol operates on three or four wires
for data transmission between a master device and one or multiple slave devices.
The bus master starts a transmission by activating the CS line of the target device,
starting a clocking signal on the CLK line in sync with its MOSI line. Eight bits can
be transferred for each burst. Depending on the use-case, the MISO line may be
used to transmit data from the slave fully duplex. The master device has to actively
poll slaves if no additional interrupt bit lines are used.

Nlview NrviEw™ [44] is a commercial state-of-the-art library by Concept Engi-
neering GmbH for creating schematic diagrams for electronic systems at different
abstraction levels, ranging from transistor level via gate and RTL-level to system
level. It is compatible with different GUI frameworks like Tcl/Tk, Qt, WxWidgets,
and HTMLS5 canvas. Nlview provides Application Programming Interfaces (APIs)
in C, Tcl, Java, Perl, and Python. The automatically generated schematic layout
can be modified and controlled both by the APIs and by human intervention.
Interactive circuit exploration is supported by Nlview’s incremental schematic
generation technology.

RISCview uses the Nlview Tcl/Tk widget to render views of the hardware modeled
in the VP together with simulation data (see Figure 3.12 for an example view).
Nlview’s incremental navigation features thereby allow to interactively explore the
hardware views and hide irrelevant parts.

3.3.4 Implementation

To extend an existing SystemC VP, the system designer needs to add views for every
IP module that shall be a part of the visualization. Views are abstract representa-
tions of modules containing the relevant information with high control over the
module’s layout. These representations act independently of the actual SystemC
behavior, separating the view from the model as much as possible. The views
are automatically collected by the visualization interface. The visualization interface
translates the instantiated views and their data into a live stream of commands
for the debugging GUI via TCP. During the simulation of the SystemC VP, the
interface extracts updated information via the registered views asynchronously.

In the GUI, the command translation layer receives the commands from the visual-
ization interface and generates appropriate API calls of the visualization engine to
render the model in a graphical representation. This additional translation layer
offers the flexibility of using different visual styles or levels of detail. Adding other
visualization engines requires only implementing a different translation layer. In

84

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

the following case study, the industry-proven Nlview engine [44] was chosen, as it
allows creating structure components and connections via Tcl/Tk commands. The
combination allows an interactive exploration of the underlying model, offering an
auto routing of individual nodes and a partial exploration to limit the view to the
relevant parts at run-time.

As already stated, there are two GDB interfaces that can be used simultaneously:
A GDB session of the simulated CPU (software side) and the SystemC executable
itself (hardware side). The RISC-V binary can be loaded with GDB as a remote
target to the SystemC VP. The virtual CPU inside the VP then can be halted with
breakpoints and the virtual memory can be explored. Additionally, the actual
VP including its numerous IP models are written in C/C++ and thus can also
be debugged with the native GDB. Due to the visualization interface running in
an asynchronous thread, the hardware can be inspected in real-time with both

methods.

3.3.4.1 Symbols and Connections

A view has to implement at least two functions: getSymbol () and update() (e.g.
see Listing 3.12). In getSymbol () , the view’s layout such as size, shape, location of
attribute fields and input/output pins is defined. This function is only called once
during instantiation of the views. The actual values for the attributes are generated
in the update () function, which is periodically called by the visualization interface
(see Sect. 3.3.4.2). It may update the attributes of its instance and the values of
all connected pins. To display useful information, the view needs a reference to
the module it describes. For convenience, an auto-generation compiler macro is
supplied for trivial views (non-templated models and no extra functions) to speed
up the design process. How the view accesses its model is up to the designer
and available interfaces; this case study passes the structure’s reference in the
SystemC main function during elaboration time. But it is also possible accessing
the information directly over class pointers, indirect over function calls, or any
other way that C/C++ allows. Lastly, a Connection is a meta-element to connect two
or more pins and can display relevant data, which can be set by any symbol that

has connected pins to it.

85

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 const Symbol GPIOView::getSymbol() {
2 Rect size = default_box; //100z100 units
3 riscview::Pin bus{"BUS", Direction::INOUT,
4 PinLocation{Orientation::left, Point{0,1*size.y/5}}
5 i
6 riscview::Pin 012{"12", Direction::0UT,
7 PinLocation{Orientation::right, Point{size.x,l*size.y/5}}
8 D8
9 [...]
10 std::map<std::string, Attribute> attrs {
11 //name, init value, lower left alignment, margin, size
12 {"regs", {"", Locator::11, {default_attrtextsize,
<> size.y-default_attrtextsize}, default_textsize/3}},
13 8
14 return Symbol ("GPIO", {bus, o012, [...]}, size, attrs);
15 };
16 void GPIOView::update() {
17 std::string text = "VAL: " + toBin(model.value, 3);
18 instance.getPin("16") ->getConnection () ->setText (
19 model.port & (1 << 10) 7 "1" : "0");
20 instance.setAttribute("regs", text);
21 }

Listing 3.12: Example view building pins and attributes of a general purpose
I/O (GPIO) hardware module (cf. the resulting symbol in Figure 3.12). This
C++ description is translated into Tcl/Tk commands that are then streamed to the
renderer.

3.3.4.2 Visualization Interface

The visualization interface provides a library of usable layout objects (e. g. Symbol,
Direction, Orientation, etc.), a registration function for all views, and an own
update thread. At program start-up, the interface tries to connect to the command
server of the debugging GUI over a TCP connection. If no connection is possible,
all further view-related function calls are ignored and the SystemC program
continues as normal. Otherwise, the registered layout objects are serialized into
individual commands and sent to the command server.

Every module and connection needs to be defined in an elaboration phase. This
definition allows setting the size of the module, location and names of input or
output pins, and the layout of attributes along with a unique identification (see
Listing 3.14). These properties cannot be changed after the instantiation to allow
the visualization engine to place modules in a space-efficient manner. When the
SystemC simulation starts, the update thread starts polling all registered instances
periodically and checks for changed attributes. All changed attributes can be
updated via their respective identification strings and are then serialized and sent
to the command server (see Sect. 3.3.4.3).

Note that the update thread is independent of the SystemC simulation, and
thus does neither affect nor is affected by the simulation time. Since the used

86

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 #define GEN_DEFAULT_VIEW(CLASS)

2 struct CLASS##View : public Viewable {
3 static const Symbol symbol;

4 Instance instance;

5

6 static const Symbol getSymbol();

7

8 CLASS &model;

9 CLASS##View (CLASS &model, string name = #CLASS);
10

11 void update() override;

12 };

Listing 3.13: Trivial class structure of a default view. Trailing slashes are omitted
for readability.

implementation of Accellera SystemC [60] is single-threaded, the impact of the
proposed debugger on the simulation speed can be neglected when run on a multi-
core system.

GPIO gpioO("GPINO", INT_GPIO_BASE); // SysC HW-Model
RV_DEF_AND_ADD (GPIOView, gpioO); // View

SPI spil("SPI1");

RV_DEF_AND_ADD (SPIView, spil);

SS1106 oled([...1);

RV_DEF_AND_ADD(SS1106View, oled);

riscview::Connection gpio_oled_dc("GPIO-OLED-DC");
gpio_oled_dc.connect(gpioO_v.instance.getPin("16"));

10 gpio_oled_dc.connect(oled_v.instance.getPin("DC"));

11 riscview.add(gpio_oled_dc);

12 [[oood

13

14 if ('riscview.connect()) exit(-1); // connect with GUI

15 std::thread updater ([&riscview]{ // start RISCview thread
16 while(true) {

O 0N ONUT W~

17 ViewableRegistrar::updateAll(riscview);

18 }

19 B;

20 sc_core::sc_start(); //start SysC thread
21

22 if (!nlv.init()) exit(-1);

23 if (!nlv.show()) exit(-2);

24 std::thread updater ([&nlv]{

25 while(true)

26 {

27 ViewableRegistrar::updateAll(nlv);
28 usleep (250000) ;

29 }

Listing 3.14: Excerpt of an initialization list of HW-modules and their views.
RV_DEF_AND_ADD() is a compiler macro that instantiates and registers a view,
naming it with the suffix _v.

87

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.3.4.3 Debugging GUI

The debugging GUI is responsible for collecting visualization commands and
drawing appropriate structures. For interchangeability of the graphical represen-
tation, the visualization commands are based on Tcl/Tk. The GUI opens a server
at start-up and listens for incoming commands from the visualization interface.
These commands are then translated by the command translation layer into API-
calls to the graphics engine. The Nlview visualization engine includes a placement
algorithm to minimize the needed screen size and concisely routes the connections
between the components.

3.3.5 Case Study

As a case study, an OLED display was implemented as a HW module into the
existing open source RISC-V VP (see Section 3.1) along with a software driver to
interface the display. The VP is able to model the SiFive HiFivel processor board
including some of the most used peripherals (i. e. UART, SPI, timers). The S51106
OLED display driver is a multi-protocol driver (SPI 3-wire, SPI 4-wire, I°C and
others) supporting monochrome displays with up to 64 by 132 pixels resolution.
The SPI 4-wire connection was chosen, because it has the fastest net transmission
capabilities. To show the real-world comparability, also a PCB was designed with
an OLED display and seven buttons. The PCB was build so that it can be stacked
on top of the HiFivel board.

3.3.5.1 Display HW Model

The display-driver model was developed according to the corresponding data-
sheet [112] and connected to the HiFive’s SPI peripheral in the RISC-V VP (see
Subsection 3.3.3). The SPI 4-Wire mode requires a differentiation of command
and data bytes via a dedicated pin connected from the GPIO module to the
display. Commands may consist of one to three bytes and expect up to two trailing
value bytes. For instance, to set the display’s contrast, the command line has to
be set low, and the byte 0x81 for set contrast along with the value (encoded in
one byte) has to be sent over SPI. Issuing multiple data bytes after a PAGE_ADDR
command are interpreted as consecutive pixel values, incrementing the internal
pixel pointer state. To aid with the design process, a view of display driver was
also created showing sent data, the last command, and an excerpt of internal state.
The implementation of this view took only 23 lines of code (see Listing 3.15).

88

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Plic
7FFF 0
BUS CORE1
UART
TX: 00 7FFF] IRQ1
RX: 00 BUS|F——mn —IRQ2
IRQ IRQ3
—{IRQ4
Enabled Interrupts
0000000000000000
0000000000000000
Pending Interrupts
0000000000000000
0000000000000000
CPU
7FFF 0
r—— BUS IRQ
0
PC CLT
20400A8A
x0 x8
00000000 00000072
x1 x9
20400D18 00000000
x2 x10
80003FBO 00000000
x3 x11
80000860 00000001
x4 x12
00000000 00000D04
x5 x13
00000000 000B0A28
x6 x14
CLINT 573500000 100242?2
S 00000000 80000000
BUSE T SS1106
0
CORE1
. CONTRAST_MODE_SET
" | =
omolcgggDo400000Do4 GPIO SPI
mtimecmp
0000000000000000 S 1 1
=—— BUS 12 CS
Memory 130
1
BUS [7PFF DC CcoL: 02
PAG: 00
00 00 00 00 10 39 40 20
30 39 40 20 FO 38 40 20 1 1
00 00 00 00 00 00 00 00 6 CAN
00 00 00 00 00 00 00 00 VAL: 111010110000111000101000
00 00 00 00 00 00 00 00 SP]
00 00 00 00 00 00 00 00 -
SPI
7FFF
BUS SPI 0
0 :
TX: 10 BO 00 00 00 00 00 00 RX:00
0000 00 00 00 00 00 00 CS Status: 00
RX:
CS: 02
IE: tx_ IP: _rx

Figure 3.12: Screenshot of the architecture view in RISCview.

89

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Figure 3.13: Screenshot of the VP simulation with an active OLED Display running
an example program.

1 GEN_DEFAULT_VIEW(SS106);

2 const Symbol SS1106View::getSymbol () {

3 Rect size = default_box;

4 std::vector<nlv::Pin> pins = {

5 nlv::Pin {"SPI", Direction::INOUT,

6 PinLocation{Orientation::left, Point{0, size.y/5}}},

7 nlv::Pin { "CS", Direction::IN,

8 PinLocation{Orientation::left, Point{0, size.y/2}}},

9 nlv::Pin { "DC", Direction::IN,

10 PinLocation{Orientation::left, Point{0,4*size.y/5}}},

11 18

12 std::map<std::string, Attribute> attrs {

13 {"command", {"", Locator::1lr, {size.x-default_attrtextsize,
<5 1.5xdefault_textsize}, default_attrtextsizel}},

14 {"regs", {"", Locator::1lr, {size.x-default_attrtextsize,
— size.y-default_attrtextsize}, default_attrtextsizel}},

15 Y

16 return Symbol("SS1106", pins, size, attrs);

17 };

18

19 void update() {

20 std::string text = "COL: " + toHex(model.state->column) +

21 "\nPAG: " + toHex(model.state->page);

22 instance.setAttribute("command", ~model.last_cmd.op);

23 instance.setAttribute("regs", text);

24 };

Listing 3.15: Code to generate a view for the S51106 Controller (cf. Figure 3.12).

90

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.3.5.2 Display SW Driver

The SW driver offers a set of high-order functions like set pixel at position x and draw
line from point x to y and translates them to series of low-level commands for the
display. It also manages the values for GPIO-Pins and handles the SPI peripheral
interface, both over memory-mapped I/0.

3.3.5.3 Debugging

During development of the software driver, undefined behavior of the display
could be noted during operations with a high pixel-throughput. Sometimes, the
display glitched in a way that the image was distorted or showed random artifacts
(see Figure 3.14).

Figure 3.14: Glitched display showing only a partial image and distorted lines. This
simulation behaves exactly like the real HiFivel board with the custom PCB.

1 void mode_data(void) {

2 setPin (OLED_DC, 1);

3 %

4 void mode_cmd(void) {

5 setPin (OLED_DC, 0);

6 }

7 void setContrast(uint8_t contrast) {

8 mode_cmd () ;

9 spi(0x81); //Command: next byte is contrast wvalue

10 spi(contrast);

1 3

12 void oled_init () {

13 spi_init();

14 // Initial setup

15 // Enable RESET and D/C Pin

16 ~ GPIO_REG(GPIO_OUTPUT_EN) |= (1 << mapPinToReg(OLED_RES) | 1 <<
— mapPinToReg (OLED_DC)) ;

17 setPin (OLED_DC, 0);

18

19 // RESET

20 setPin (OLED_RES, 0);

91

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

21 sleep_u(10); // at least 10us

22 setPin (OLED_RES, 1);

23 sleep (100); // at least 100ms

24 // Initialize display to desired operating mode.
25 Loood

26 setChargePumpVoltage (0b10);

27 setContrast (0xff);

28 // Clear screen (overwrite entire memory with zeroes)
29 oled_clear();

30 setDisplayOn(1);

31 }

Listing 3.16: Part of the original SS1306 display software driver.

The first approach to finding this bug was starting the simulation with a breakpoint
on the software side in the display driver routine that handles the SPI transfers.
However, this did not yield any results, because the simulation did not show any
false behavior as long as the breakpoint was active. Also, printing out the SPI
bytes over the serial monitor suppressed the undefined behavior. The second
approach was to set a breakpoint in the display module (hardware side) at the
command interpretation state machine. It could be noticed that the display driver
gotinvalid command bytes that were not implemented in the software driver. Also,
the display got too many consecutive data bytes, thus writing out of bounds of its
page buffer. The execution of the SystemC executable was then paused with a
breakpoint, instructing to halt when the display detected an invalid command. By
inspecting the RISCview window (Figure 3.14), it could be seen that the transmit
X’ (TX) queue of the SPI module still contained command bytes, but the D/C-line
was already set high (data mode). In this state, the display’s state machine still
expected a second command byte for the contrast value (CONTRAST_MODE_SET).
This observation led us to the idea that the switch between data and command
mode did not wait until the whole SPI transmit queue was emptied. It also
explained why a debug print in the software driver suppressed the problem; the
time it takes to send text through the comparatively slower UART was enough for
the SPI TX queue to run empty.

The fix itself required only a few lines to change: Before switching between data-
and command mode, wait for the lower SPI transmit watermark (SPI_IP_TXWM)

to indicate an empty transmit queue (see Listing 3.17).

92

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

SS1106
CONTRAST_MODE_SET
GPIO SPl
7FFElB1S 12 Hcs
13 0 1
DC COL: 02
PAG: 00
1
| 16 CAN
» SPI
SPI
_ 0l cg RX. 00
LT
RX:
CS: 02
IE: tx_IP: _rx

Figure 3.15: Snapshot of a still command-populated TX queue, although Data/-
Command line just toggled to data mode. Note the populated TX buffer in the
SPI peripheral, where the top left byte is the first to be transmitted. The first two
are still commands: 0x10 for the contrast value and 0xBO for the charge pump
voltage. Following bytes are all zeroes to clear the screen. Additional status flags
indicate that the receive "X’ (RX) queue is empty, CS is set to device 02 (S51106),
and the TX interrupt is enabled but not pending.

1 void spi_complete() {

2 // Wait for interrupt condition.

3 while (!(SPI1_REG(SPI_REG_IP) & SPI_IP_TXWM))

4 asm volatile("nop");

5 // TX-Watermark is set while byte is still 4n transit
6 // One byte at 8KBit/s is one microsecond

7 sleep_u(1);

8

10 void mode_data(void) {
11 // not already in data mode
12 if (!getPin (OLED_DC)) {

13 // wait for SPI to complete before toggling
14 spi_complete();

15 setPin (OLED_DC, 1);

16 }

17 %

18

93

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

19 void mode_cmd(void) {

20 // mot already in command mode

21 if (getPin (OLED_DC)) {

22 // wait for SPI to complete before toggling
23 spi_complete () ;

24 setPin (OLED_DC, 0);

25 }

26 }

Listing 3.17: Fixed part of the software driver.

3.3.5.4 Evaluation

If one had used just the normal GDB debugger, the underlying problem would
not have been clear. When the program is halted at the memory interface of the
display module, the access to the state of the SPI module is hidden behind the stack-
frames of the different user-space threads of SystemC. The encountered bug was
also noticeable in the real hardware, which shows the accuracy of the provided
case-study.

3.3.6 Conclusion and Future Work

This section has presented a novel system for hardware/software co-debugging
that is applicable in an early stage of the development with a minimal impact on
design-time. Using a transaction-level virtual prototype of the hardware, written
in SystemC, it provides a live view on the internals of the hardware design, while
stepping through the executed software using a state-of-the-art software debugger
like GDB. The integration into a project requires little adaptation to the code-base
with a flexible view on the hardware. A case study with a modeled OLED-Display
operated by a RISC-V processor demonstrated the usefulness of the proposed
visualization for finding bugs related to hardware-software interactions.

While the proposed visualization system works as intended, it also opens up
possible future work, including:

e Combining the system with a dynamic flow analysis framework like [45] to
visualize security policy violations and data flow in real-time;

e Adding a static code analysis based on re-occurring SystemC class patterns,
which would enable automated visualization of modules at the expense of
displaying possibly irrelevant information;

e Implementing a hardware-version of the visualization interface to permit
hardware debugging with the real hardware in the same style as its VP.

94

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.4 Hardware-In-The-Loop Framework to Bridge the
VP /RTL Design-Gap

The following section contains unpublished material that was submitted to the
CODES+ISSS Embedded Systems Week 2023. It starts by an extended introduction
and motivation in Subsection 3.4.1 and an overview of related work in the field of
HWITL in Subsection 3.4.2. The main approach with the protocol and the bridge
implementations is described in Subsection 3.4.3. Following is an experimental
setup for the evaluation and case-studies in Subsection 3.4.4 where different
aspects of the VPIL approach are evaluated. Subsequently, the lessons-learned and
general considerations are discussed in Subsection 3.4.5. Lastly, further improve-
ments and future applications are summarized in the outlook in Subsection 3.4.6.

3.4.1 Introduction

Modern SoC development is driven by the ever rising demand of a faster time-to-
market for highly integrated and complex designs which are subject to phenomena
known as the design gap and the verification gap [1, 2]. Briefly, the design gap
describes the discrepancy between an increasing capability of chip manufacturers,
making more transistors per chip available, while the design engineers can not
make use of that large amount of available transistors in a design [3]. Similarly,
the verification gap is characterized by the increasing need for verification of
chip designs versus the available state-of-the-art technology for verification [119].
Solving these issues has been the subject of research in the past decade.

esign methodologies like ESL offer additional abstractions help to accelerate the
design and verification cycles [120-123]. One of the abstractions within the ESL
methodology is TLM. TLM basically abstracts away the multiple events required
for a communication (like synchronizing transmitter / receiver, bit-encoding of
instructions, and bus communication itself) into single transactions.

To further enhance the process of ESL based systems development a central
technique is the VP. Unlike pure ISSs, VPs model the structural and behavioral
interaction between the processing units, the bus system and peripherals. When
VPs are modeled with the help of the TLM abstraction, they can gain high
simulation speeds that enables booting operating systems, while analyzing the
hardware interaction and exploring the design space efficiently. Through VPs, the
SoC design flow is improved and allows the development of the SW in parallel
to the HW. As a consequence of the parallel SW / HW development, the time-
to-market is improved and verification strategies can be employed early in the

95

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

development process. Furthermore, this allows the development team to spend
more time in developing the USP of the product.

The use of VPs and TLM are two key elements of the ESL methodology and are
considered industry proven for the purpose of bridging the design and verification
gap. With VPs representing executable models of the specification, HW and SW
engineers both have well-defined interfaces with a given reference model to work
with. While the VP will be binary compatible with the final HW (behavioral model),
the actual HW usually is designed with the help of RTL abstractions. These RTL
models can be synthesized automatically to the final layout of the transistors.
While the design and verification gap can be bridged with the ESL methodology,
VPs and TLM, a gap between the TLM and RTL emerges as a visible challenge.
Although there exist efforts in academia and industry to automatically generate
RTL code from TLM representations, these techniques are mostly proprietary and
not widely prevalent. Instead, most of the implementation is done through manual
RTL coding or with the aid of High-Level Synthesis. On the road to a gap-free
design and verification methodology, so called cross-level techniques have been
proven to be a viable option. Cross-level techniques that emerged in recent years
combine TLM and RTL representations for design and verification to leverage the
advantages of the ESL methodology, specifically TLM and VPs. In this section, a
technique is presented to augment VPs with HWITL to add to these techniques
and lessen the TLM/RTL gap.

Between the available VP and the final RTL model, usually parts of the system can
already be considered to be ready for test and verification, or even signed-off as
complete. But without the full RTL model available, though, these parts cannot be
used and tested on the real HW. With the proposed methodology, the available,
synthesizeable RTL modules can be integrated to run on an FPGA while the rest
of the system is still running in the VP. Through this technique, the TLM/RTL
gap is bridged, as incremental results can be tested early in an integrated setup
running with the real SW applications. This reduces the time-to-market further, as
integration efforts for the final RTL can be reduced and the focus can be shifted
to the USP of the system (e.g. a specific HW accelerator). Thus, as modern SoC
often contain an extensive library of readily available IP, the development of the
USP can become the point of interest.

Concluding, this section proposes a HWITL methodology for the SoC develop-
ment flow. It connects TLM VPs with memory-mapped RTL components (specif-
ically the USP) while the remainder of the system’s HW is still in development.
The integration of the RTL component is realized with a FPGA commonly used
for HW prototyping. For the SW running on the SoC VP, and the HW itself, it is
fully transparent, such that integration tests can already start before the complete
system is modeled in synthesizable RTL. A brief overview of the approach is

96

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

“CPU %, & PLIC Z=fSENS

\

1 |
CLINTE & !

3 3

|]

\ /

i

i

I

5 MEM SPI
GPIO KI5 BRIDGELFUART Protocol BRIDGE : MEM

RISC-V VP FPGA Chip

Simulated on host computer Physical peripherals

w
=
O
(9]
m

Figure 3.16: Architecture level overview of the proposed Virtual Peripheral in-the-
Loop approach. On the left side is the TLM virtual prototype with a memory-
mapped bridge (in green) as the initiator. The right side represents the real
hardware with the responder bridge handling the bus accesses. In blue is plotted a
possible data flow path from the virtual CPU to a real sensor RTL implementation.

illustrated in Figure 3.16. A VP model (left side) is interconnected with the FPGA
based prototype (right side) through the proposed bridge (green). The VPIL
bridge allows the FPGA based prototype to work without an own CPU, as this
is part of the VP in this example. The proposed VPIL enables a HW /SW co-design
boost to close the TLM/RTL gap with an easily extensible protocol and an IP library
of existing and well-established VP components. VPIL allows system designers
to focus on their USP from the design space exploration phase to early system
integration tests, as well as aiding the verification with the possibility of cross-
level model verification. Additionally, it offers using the SW-based debugging
capabilities for the TLM models, even if the synthesized chip will not have them.

In a case-study, the RISC-V VP [38] is utilized and extended with a peripheral
bridge, allowing TLM bus transactions to be executed on a RTL model residing
in an FPGA (see Figure 3.16). The experiments demonstrate how a lightweight
and extensible protocol can be employed to establish a bridge between the VP and
the FPGA HW. Considerations are discussed that arise in the implementation of
the proposed bridge and what parts of the bridge can be adapted in order to fit
various requirements (fast setup time, robustness, high throughput / low latency,
etc.). Finally, to stimulate further research, the proposed HWITL bridge along

97

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

with the implementation and test results of the case-study is made available as
open-source [51] as most of the work in this thesis.

3.4.2 Related Work

HWITL is a dynamic testing method that combines real HW, simulated environ-
ments, and integrated software [124], where usually the real hardware (once
available) and placed in a simulation loop where the outside environment is
simulated [125, 126]. The strengths of this methodology enables early integration,
higher quality tests as developed HW can partially be used together with the
simulation environment. As a method, HWITL has experienced a broad range
of industrial and academic interest in the modeling of electronics [125, 127-130],
automotive [131, 132], aerospace [133] and other multi-disciplinary fields [134—
136]. In [125] the authors present a survey of past HWITL approaches and the
challenges in respective approaches. This work mostly focuses on works of electri-
cal engineering, in which control algorithms are simulated and HW is controlled
in a loop. In [128-130, 132, 133], HWITL is utilized such that the SW integrated
in the final HW is simulated (e.g. the control algorithm for a plant) in the loop
with prototypes of the HW. Such approaches are common and allow for SW and
control engineers to explore the design parameters for the control algorithm and
validate and verify the control algorithms. [131] shows an industrial approach
for virtual HWITL for automotive use, that focuses on higher level models to be
integrated easily in HWITL environments. [136] present a methodology that offers
simulation and automatic optimization for distributed Cyber-Physical Systems
(CPS) that utilizes FPGA-based HWITL.

[127] describe an approach different from the mentioned ones as here the SoC is the
HW and the environment (e.g. sensor and actuator data processing are handled in
a simulated environment). [135] follow an approach similar to [127] but addresses
real-time challenges regarding data exchange and synchronization.

While none of these works directly mention a HWITL methodology for the SoC
development process, they address challenges and approaches that are common
across HWITL. Often, the SW part of the embedded system to simulate with
HWITL is designed either as a control system (e. g. with MATLAB/Simulink), or
emulated otherwise. In these fields, a complex embedded system is commonly
tightly coupled with a CPS, consisting of sensors, actuators and mechatronic
systems. The simulation of the CPS often utilizes complex simulation systems
(e.g. with MATLAB/Simulink), such that either the embedded system (e.g. a
SoC) or the physical system are modeled with HW and respective HW prototypes.
Through this effort, the modeling complexity within the realm of simulations can

98

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

be decreased and engineers can focus on design, integration, test and verification
tasks.

With technological advancements and the increase in complexity of embedded
systems (specifically SoCs), industry and academia have observed the aforemen-
tioned design and verification gaps. Naturally, engineers and researchers refine
existing the design and verification processes and establish new methodologies
to anticipate the gaps. Previously, there existed no peripheral-centric HWITL
approach for SoCs. One of the reasons for this may be the lack of full system
hardware simulations, that only recently have been established by academia and
industry. For full system hardware simulation VPs can be considered as an
accepted methodology for complex SoC design and verification.

Due to the usage of VPs in this work, a short overview of related works to VPs will
be given as well.

3.4.3 Approach Overview

As stated earlier, the key idea of the proposed approach is to enable developing
individual RTL models without the need of designing the complete SoC first.
Following Figure 3.16, early RTL development may already start with existing
VP TLM models (left side). By leveraging the proposed VPIL protocol with the
reference implementations for the RISC-V VP and a generic FPGA, individual
peripherals can directly implemented in RTL (right side). Bus accesses to external
peripherals, initiated by the CPU, DMA, or other bus masters on the RISC-V VP,
are directly mapped via the virtual bus bridge (see Subsection 3.4.3.2) and the
UART protocol (Subsection 3.4.3.1). Additionally, these forwarding memory
ranges can be easily changed in the RISC-V VP via program options, allowing
simultaneously existing SystemC models and on-FPGA implementations of the
same IP. This enables a fast and easy way of behavioral cross-level testing and
debugging.

The following subsections present the details of the proposed approach. Starting
in Subsection 3.4.3.1, an introduction is given into the serial protocol between the
VP and a remote hardware that allows mapping these accesses to devices on the
FPGA. Subsection 3.4.3.2 then continues on a high abstraction level by explaining
how virtual peripherals are connected to the VP and how bus accesses are routed
transparently. Finally, in Subsection 3.4.3.3, the implementation of the protocol
decoder and bus handling on the FPGA is demonstrated.

99

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

3.4.3.1 Protocol

The proposed VPIL protocol is a lean and hardware-parsing-friendly protocol
between an initiator (the VP) and a responder (the FPGA implementation). The
initiator will always start an interaction with a Command and an Address in
network-order endianess. Depending on the command (e. g. a read), the initiator
will also transmit an Address (cf. Figure 3.17b). The responder will always
respond with a Status that contains an acknowledgment field and a flag whether
an interrupt is pending or not. In the case of a read, it will also contain a 4 byte
Payload in network order.

Besides payload data handling, a Command may also poll for an interrupt, reset the
FPGA, and initiate other actions that are reserved for future-use (see Listing 3.18,
Lines 5 to 12). In case of reset and getPendingIRQs, no payload is sent in the request.
The reset command forms a special case; as the responder immediately resets itself,
no Address is sent in the request, and no response is given. All other commands
will carry the 4-byte Address field and expect at least one byte of ResponseSta

tus.
READ WRITE
Initiator Responder Initiator Responder
vp FPGA VP FPGA
I Command: 1 Byte (Read) i Conmand: 1 Byte (write)
] 2 ' 1
]5 | -
' s H h »
. D4 : Pl
: status: 1 Byte . : 13
; : : “« 2
(a) A read request. The 4-Byte Payload is (b) A write request.

always sent, including in error conditions.

Figure 3.17: Flow diagrams of two requests from the initiator to a responder. All
individual fields are encoded in little endian network order.

100

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 typedef uint32_t Address;
2 typedef uint32_t Payload;

3

4 struct __attribute__((packed)) Request {
5 enum class Command : uint8_t {
6 reset = 0,

7 read = 1,

8 write,

9 getPendingIRQs,

10 setTime,

11 exit

12 } command;

13 Address address;

14 };

15

16 struct __attribute__((packed)) ResponseStatus {
17 /*

18 * Ack: bits 0 to 6

19 * irq_waiting: bit 7

20 */

21 enum class Ack : uint8_t {

22 never = 0,

23 ok =1,

24 not_mapped,

25 command_not_supported

26 } ack : 7;

27 bool irq_waiting : 1;
28 };

29

30 struct ResponseRead {

31 ResponseStatus status;
32 Payload payload;

33 };

34

35 struct ResponseWrite {
36 ResponseStatus status;
37 };

Listing 3.18: Exerpt of the protocol data types. This is used by the initiator and the
mock-up responder host programs.

3.4.3.2 Peripheral Bridge

The peripheral bridge is the SystemC TLM implementation of the initiator. This
bridge acts as a common memory-mapped bus-slave peripheral in the RISC-V VP.
Every access, however, is forwarded transparently through the communication
protocol (see Subsection 3.4.3.1) to a connected responder bridge. At this stage, the
initiator bridge is unaware whether the responder is implemented in an FPGA via
a serial connection, or just simulated in a separate host process. This simplifies
the testing and debugging of the protocol, and also allows extensions for future
applications.

101

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 void VirtualBusMember::transport(tlm_generic_payload &trans, sc_core::sc_time
— &delay) {
tlm_command cmd = trans.get_command();
unsigned addr = trans.get_address();
auto len = trans.get_data_length();

2

3

4

5

6 hwitl::Payload temp = O;

7 hwitl::Payload* data = &temp;
8
9

const bool unaligned = len != sizeof (hwitl::Payload);
if ('unaligned) {
10 data = trans.get_data_ptr();
11 } else {
12 if (cmd == TLM_WRITE_COMMAND)
13 memcpy (data, trans.get_data_ptr(), len);
14 }
15
16 if (cmd == TLM_WRITE_COMMAND) {
17 const auto response = bus_bridge.write(base_address + addr, *data);
18 switch(response) {
19 case hwitl::ResponseStatus::Ack::ok:
20 break;
21 case hwitl::ResponseStatus::Ack::not_mapped:
22 trans.set_response_status (TLM_ADDRESS_ERROR_RESPONSE) ;
23 break;
24 default:
25 trans.set_response_status (TLM_GENERIC_ERROR_RESPONSE) ;
26 }
27 delay += m_write_delay;
28 } else if (cmd == TLM_READ_COMMAND) {
29 const auto response = bus_bridge.read(base_address + addr);
30 if (!response) {
31 trans.set_response_status (TLM_GENERIC_ERROR_RESPONSE) ;
32 return;
33 }
34 switch(response->getStatus()) {
35 case hwitl::ResponseStatus::Ack::ok:
36 xdata = response->getPayload();
37 break;
38 case hwitl::ResponseStatus::Ack::not_mapped:
39 trans.set_response_status (TLM_ADDRESS_ERROR_RESPONSE) ;
40 break;
41 default:
42 trans.set_response_status (TLM_GENERIC_ERROR_RESPONSE) ;
43 }
44 if (unaligned)
45 memcpy (trans.get_data_ptr (), data, len);
46
47 delay += m_read_delay;
48 }
49 }

Listing 3.19: The simplified transport function of a virtual bus member using the
initiator bridge. Read and write accesses are mapped through the TLM-agnostic
bus_bridge.

The implementation is written in SystemC TLM, as can be seen in Listing 3.19. Read
and write accesses to the peripheral are mapped through the initiator bridge, while
most of the code is just for possible alignment of the four bytes of the protocol’s
payload (Lines 6 to 14, and Lines 44 to 45) and error handling (in the switch-cases).
The protocol handling, including the byte order packing, is completely wrapped

102

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

by the virtual bus protocol implementation bus_bridge. Not shown, for brevity,
is the SystemC thread that periodically polls the responder via the bus_bridge for
pending interrupts that are then forwarded to the PLIC.

3.4.3.3 FPGA Implementation

rxd

txd

UART

(@) RXFIFO

—

Translator
Interface
Controller
(TIC)

Timeout

v

®
)

<4—

®

TX FIFO |

v v

ici

Response
Builder

+

Serial

SN Transaction
nverter

co Ie e Bus Master

SimpleBus

Bus Decoder

® ‘D:

Figure 3.18: The FPGA implementation of the responder bridge. Modules in
blue are for interfaces, models in purple represent internal modules handling
communication between interfaces, and red / orange modules are for orchestration
and control. The response buildup time is in the proposed implementation always
under one millisecond.

Figure 3.18 shows a block diagram of the internal hardware architecture of the
translation bridge. The explanation will follow along the enumeration from @ to ®
in Figure 3.18 for the hardware modules and provide further information following
the enumeration from (;\: o (ﬁt. Additionally, the modules are grouped in colors
to differentiate them easily for the reader. Modules with the color blue are for
interfaces, internal modules in purple are handling the bytes between interfaces,
modules for orchestration and control are red and orange.

The UART interface (@, blue, left side) provides the byte wise serial communi-
cation with the host executing the VP. This interface was chosen exemplary for
this case study, but any interface that will provide raw bytes to the internal First-
In-First-Out (FIFO) buffer can be used. Next the received bytes are stored in a
FIFO @, from where the bytes are directed respectively according to the protocol
as discussed in Subsection 3.4.3.1. At the heart of the hardware implementation is
the Translator Interface Controller (TIC) (®), red, top right). The TIC orchestrates
and parses the bytes according to the defined protocol, relays transactions coming
from the VP through the bus master (&, purple, center), and handles errors like
unmapped address responses and exception cases in the protocol. Upon too much

103

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

delay or other unaccounted exceptions that could stall the hardware through the
interfaces, a timeout will return the system, initiated by the TIC, into a defined
initial state. As addresses and data arrive in bytes a converter (@, purple, center),
pre-processes them into chunks of 32 bit words for the transaction bus master (&,
purple, center). The transaction bus master is attached to the SoC bus, onto which
the hardware peripherals designed as RTL modules are attached. After processing
the received transaction, the response builder ((®, purple, center) generates a
protocol conform response. The TIC handles the different cases (including errors)
and can instruct the response builder to generate appropriate packets. Generated
packets are passed byte-wise into a FIFO, as the serial interface transmits the data
at a different rate than the packets are generated at.

(;A:): UART was chosen as the serial interface, as it is a readily available physical
layer protocol that can be extended and replaced if the requirements demand for
more speed, robustness or other modes of operations. The hardware for the serial
interface can be configured for various baudrates (e.g. 115200 baud), bit modes
and additionally provide RS-232 conforming control flow signals to allow further
robustness already.

(jB:): The FIFOs for the receiving and transmitting end are designed to be config-
urable for the requirements that stem from the different data rates on the serial
interface and the internal processing speed.

' :C: i For additional robustness and a configurable timeout is included. By default,
it is set to 2ms. If no event (such as incoming bytes, change of bus state, etc.)
occurs, the timeout instructs the TIC to reset the systems state to the initial values
to provide a clean and defined start.

(i)::: The internal bus interface for the case study provides an easy to use and
extensible bus configuration.

Listing 3.20 provides an example how through the abstractions of SpinalHDL new
peripherals can be easily included on the bus with a respective bus address range.
In Line 2 a list is declared, that will hold tuples of references to peripheral bus
interfaces, the respective select signal and a bus mapping. In Lines 4 to 6, a
peripheral is added by appending the list with its bus interface, select signal and re-
spective memory mapping. The bus mapping (e.g. MaskMapping(0x500000001,

Oxfffff£f£f01)) uses a base address and a respective mask to allow the decoder
to check if a requested address maps to the peripherals base address. This is
repeated between Lines 8 to 19 for further peripherals and finally the list is passed
in Line 22spinal-interconnect:decoder-end into the bus decoder. The bus decoder
will interconnect the bus master and the list of bus interfaces according to the
respective bus mapping. This additional abstraction, made available through the
features of SpinalHDL, provides an easy extension mechanism and makes the HDL
code easy to follow.

104

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

1 // ****x¥%% Peripherals ***xx¥x**
2 val busMappings = new ArrayBuffer[(SimpleBus,(Bool, MaskMapping))]
3
4 val gpio_led = new GPIOLED() // onboard LEDs
5 busMappings += gpio_led.io.sb -> (gpio_led.io.sel,
<~ MaskMapping (0x500000001 ,0xfff£f£f£f£f01))
6 io.leds := gpio_led.io.leds
7
8 val gpio_bankO = new SBGPIOBank() // GPIO for IO switches
9 busMappings += gpio_bankO.io.sb -> (gpio_bank0O.io.sel,
— MaskMapping (0x500010001 ,0xffffff£01))
10

11 val gpio_bankl = new SBGPIOBank() // GPIO for LEDs, etc.

12 busMappings += gpio_bankl.io.sb -> (gpio_bankl.io.sel,
— MaskMapping (0x500020001 ,0xfffff££01))

13

14 val uart_peripheral = new SBUart() // wuart 9600 baud

15 busMappings += uart_peripheral.io.sb -> (uart_peripheral.io.sel,
— MaskMapping (0x500030001 ,0xfffffff01))

16 uart_peripheral.io.uart <> io.uartO

17

18 val gcd_periph = new SBGCDCtrl()

19 busMappings += gcd_periph.io.sb -> (gcd_periph.io.sel, MaskMapping(0x500040001,
— OxFFFFFFO001))

20

21 // **xxx*x%% Master-Peripheral Bus Interconnect ***xxx***

22 val busDecoder = SimpleBusDecoder (

23 master = busMaster.io.sb,
24 decodings = busMappings.toSeq
25)

Listing 3.20: SpinalHDL digest of top level peripheral bridge. Digest shows how
new peripherals can be easily added to the bus infrastructure.

3.4.4 Evaluation / Case-Study

For the case-study of the proposed approach we, envision two scenarios. First, an
incremental development in which modules are added throughout development
stages, to aid the general development process for SW and HW developers (as
real HW descriptions become available but are not existing yet as a full system).
Second, a focused development/refinement of the USP of a new system (e.g.
a specialized HW accelerator). State-of-the-art systems rely on a backbone of
a rich and well-tested IP library for the common, reoccurring modules. This
circumstance enables engineers to design more complex and powerful systems
offering USPs that competing chips do not offer (e.g. specialized accelerators for
cryptography;, artificial intelligence, etc.). Putting the focus to the USP and making
it available to the SW developers and verification engineers, who then can design
and verify the respective firmware much earlier in the design process.

For the evaluation study, we use a HX8K FPGA from Lattice Semiconductor
on a respective development board (see Figure 3.19). The development board
tfeatures on-board LEDs (lower part of the FPGA’s PCB) and many mappable

105

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

UART to Host PC !

JE

Figure 3.19: Annotated image of the experimental breadboard setup. The USB-
connections not shown are connected to the host PC.

I/O connections for prototyping. For the experiments, these are two GPIO banks
and an internal Greatest Common Divisor (GCD) peripheral. GPIO bank A is
connected to a switch array, while GPIO bank B is connected to LED and a
DS1302 real-time clock. The VPIL protocol is routed through the UART to Host
PC connection. The protocol and some internal pins can be monitored through the
connected logic analyzer on the left. The used HX8K FPGA is supported through
vendor tool chain as well as a open source tooling. Additionally, this model was
chosen to make the approach accessible and open sourced, thus stimulating further
research. However, the choice for the HX8K FPGA also sets a limit on the available
resources, so the determined area and memory usages, as well as the maximum
operating frequency f,,,,, are more assessable. For the host computer executing
the VP, an Intel i5-8520U @ 1.60 GHz with Fedora 37 is utilized.

To determine the quality and effectiveness of the approach, the two scenarios will
be subject to measurements of execution times, FPGA resource utilization and ad-
ditional metrics. In order to determine the time dependent behavior (e. g. protocol
overhead, time per transaction, etc.), for the GPIO case-study the transaction were
recorded with the logic analyzer. This allows measuring the duration for the read
and write transactions respectively. Additionally, the measurement allows for an
estimation of the delay contributed by the FPGA environment. Furthermore, for

106

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

each case-study the FPGA resource utilization was measured in terms of area (as
Logic Cells (LCs)) and memory (as Block RAM (BRAM)). The performance and
usability of the FPGA design can be estimated through the maximum operating
frequency f,,q., and the time it takes for the various designs to be synthesized and
processed by the place & route (PNR) to obtain a bitstream for the FPGA. For the
case-study with the GCD accelerator, the execution time of the VP executing SW
version is compared with the HWITL approach utilizing the RTL implementation.

Virtual Prototype . FPGA
ffff ffff
- free -
6000 0000
5fff ffff
5fff ffff
5 - unmapped -
Virtual Bus 5000 4100
GCD 5000 40ff
5000 0000 : AES SIS 5000 4000
4100 0000 5000 3fff
- unmapped -
G 5000 3010
4000 0000 EXTERNAL 5000 300f
3fff ffff UART
- free - 5000 3000
2000 0010 5000 2fff
2000 000f - unmapped -
Terminal 5000 2010
2000 0000 5000 200f
1fff ffff GPIO BANK 1
- free - 5000 2000
0201 0400 5000 1fff
0201 03ff - unmapped -
5000 1010
System Calls 5000 100f
0201 0000 GPIO BANK 0
0200 ffff 5000 1000
CLINT 5000 Offf
0200 0000 - unmapped -
01ff ffff 5000 0010
5000 000f
Board LEDs
Memory 5000 0000
0000 0000

Figure 3.20: Memory map implemented for the case-study. The simulated SoC is
on the left side, while the RTL HW implementations are on the right side.

Figure 3.20 shows the memory map implemented for the various peripherals and
the exemplary accelerator. Addresses are denoted at the sides in hexadecimal
starting from the bottom (e.g. Memory from 0x0000 0000 to 0x01ff ffff). On

107

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

the left side the memory map with its simulated peripherals inside the VP is shown.
For the HW implementation on the FPGA the right side shows the respective mem-
ory map. The Virtual Bus peripheral inside the VP on the left side (0x5000 0000

to Ox5fff ffff) is mapped transparently through the proposed protocol to the
peripheral bridge on the FPGA. In the FPGA, the memory map is implemented
such that it matches the VP’s address range. This is not a requirement, though, as
the VPIL SystemC peripheral may re-map addresses transparently.

3.4.4.1 GPIO Bank

1 typedef uint32_t BUS_BRIDGE_TYPE;
2 static volatile BUS_BRIDGE_TYPE * const INTERNAL_LED = (BUS_BRIDGE_TYPE * const)
— 0x50000000;

3 static volatile BUS_BRIDGE_TYPE * const GPIO_BANK_A = (BUS_BRIDGE_TYPE * const)
<~ 0x50001000;
4 static volatile BUS_BRIDGE_TYPE * const GPIO_BANK_B = (BUS_BRIDGE_TYPE * const)

— 0x50002000;

5
6 struct MRV32_GPIO {

7 volatile uint32_t direction;
8 volatile uint32_t output;

9 volatile uint32_t input;

10 };

11 struct MRV32_INTLED {

12 volatile uint32_t val;

13 };

15 static struct MRV32_INTLED* const INT_LEDs = (struct MRV32_INTLED*) INTERNAL_LED;
16 static struct MRV32_GPIO* const SWITCHES = (struct MRV32_GPIO*) GPIO_BANK_A;
17 static struct MRV32_GPIO* const EXT_LEDs = (struct MRV32_GPIOx) GPIO_BANK_B;

19 volatile static uint8_t internal_led_state = 0;
20 void timer_irq_handler () {

21 INT_LEDs->val = internal_led_state++;

22 set_next_timer_interrupt ();

23

25 int main() {

26 SWITCHES->direction = 0x00;

27 EXT_LEDs->direction = Oxff;

28 /7000]

29 while(!(SWITCHES->input & 0b10000000)) { // main loop
30 if (SWITCHES->input & 0b00000001)
31 sweepLED () ;

32 else

33 countLED () ;

34 }

35 return O;

36

Listing 3.21: Simplified implementation of the GPIO bank interaction
demonstration running on the VP. The GPIO banks are memory-mapped and
behave the same as if they were implemented on the VP.

Listing 3.21 shows an excerpt of the basic interaction test that reads from GPIO
bank A connected to a switch array, and writes data to the GPIO bank B which is

108

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

connected to LEDs (cf. Figure 3.19). The global memory map is defined in Lines 1
to 4, with the actual peripheral interfaces defined in Lines 6 to 17. The actual
read /write interaction is done through struct accesses (e.g. in Line 26). Based
on the value of a physical, external switch (read in Line 30), the external LEDs
are driven in a different pattern to demonstrate the ability of interacting with the
external environment. If the switch on the Most Significant Bit (MSB) is unset, the
program terminates (Line 29).

The GPIO bank peripheral was taken from the open-source MicroRV32 [89] that
offers a set of SpinalHDL models, including a set of basic I/O peripherals. The
GPIO peripheral offers three basic 32 bit registers (see Listing 3.21, Lines 6 to 10).
The direction register determines whether a physical pin should be used for input
(0) or output (1). The input register contains the corresponding state if input
is enabled in the direction register, while the output register sets the physical
pin state respectively.

001 0x00 0x00 0x00 0x81

Async Serial [1]

(a) Read request.

0x02 0x50 0x00 0x10 0x00 0x00 0x00 0x00 0x00
D0 petx

001
perx

Asyne Serial [1]

(b) Write request.

Figure 3.21: Read (3.21a) and write (3.21b) transactions with annotated timing
information and decoded serial communication. This is the UART implementation
of the proposed protocol (cf. Figure 3.17), and the response buildup time, in both
cases, is under one millisecond (green marker 1).

109

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

While the functional test succeeded, the serial communication was also recorded
between the VP and the FPGA with a logic analyzer. For both recorded commu-
nications in Figure 3.21, the top portion shows the transmitted bytes from the VP
to the FPGA, while the bottom portion shows the bytes received from the FPGA
as response. The top measurement (Figure 3.21a) shows a read (0x01) to the
address 0x5000 1008, with an acknowledging response (0x01) and the read data
0x0000 0081 . For the whole transaction, the marker pair 0 (red) indicates a time
of 848.25 us, while the internal processing on the FPGA is measured by marker
pair I (green) and takes 3.25 pus. The bottom measurement (Figure 3.21b) shows a
write (0x02) to the address 0x5000 1000 with the write data 0x0000 0000 and the
acknowledging response (0x01). For the whole transaction the marker pair 0 (red)
measures a time of 859.75 ps, the internal processing on the FPGA is measured by
marker pair 1 (green) and takes 0.626 ps.

In this configuration, the mean protocol latency was measured as just under one
millisecond at 115200 baud. This is a promising result, as the FPGA implementa-
tion itself only needs less than 4 ps and the UART speed can be further increased
when required.

3.4.4.2 GPIO Bit-Banging SPI

This GPIO experiment focuses on the general latency of the protocol. In this
experiment, the SPI function to interface with an DS1302 real-time clock is not
implemented on the FPGA but instead bit-banged via the MRV32_GPIO bank, as
introduced in Subsection 3.4.4.1. The relevant pins of the DS1302 real-time clock
are CE (chip enable), I/O (bi-directional data port), and SCLK (clock input for
chip). These can be used to clock-in control bytes, which are either a read- or a
write command followed by an address. With this scheme, HW-registers can be
read or written. In the case of the DS1302, the registers contain the current time in
a certain format.

For implementation, a readily available Arduino library was used. As it references
only four functions of the Arduino framework (void digitalWrite (PinNumber
pin, LogicLevel level), LogicLevel digitalRead(PinNumber pin), void pin
Mode (PinNumber pin, PinDirection dir), and void delayMicroseconds(Dura
tion_us duration)), the functions could be implemented quickly to interface
with the MRV32_GPIO bank. Basically, the SPI / 3-wire protocol is implemented in
SW by setting and reading the pins, combined with accurate delays in-between. As
the delayMicroseconds(...) function depends on a measure of time (through
the RISC-V CLINT), a host-time locked CLINT in contrast to the usual simulation
time CLINT was used in this experiment. This is needed, as the interfacing DS1302
device resides in the “real” time that needs to be synchronized.

110

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

The case-study concluded successfully as the absolute time, managed in the
DS1302 chip, could be read and written over the time span of several days.

3.4.4.3 GCD Calculation

To demonstrate application area for developing accelerators, a GCD implemen-
tation in both SW and SW were timed against each other. GCD was chosen
because of the comparatively simple implementation, while still being not easy
to pipeline because the length of the data-path heavily depends on the input
combination. The SW and HW implementation both use Euclid’s algorithm to
find the GCD (see Listing 3.22). For the experiments, a separate executable for the
two implementations was build to run on the RISC-V VP. The SW implementation
does not use the proposed VPIL bridge but implements the algorithm purely in SW
(Listing 3.22, Lines 1 to 9), while the HW executable interfaces with the FPGA’s
memory map (Lines 10 to 16) tunneled through the VPIL bridge.

1 uint32_t sw_GCD(uint32_t a, uint32_t b) {
2 while(a !'= b) {
3 if(a > b)
4 a -= b;
5 else
6 b -= a;

7 }

8 return a;

9 %}

10 uint32_t hw_GCD(uint32_t a, uint32_t b) {
11 GCD_ACCEL->a = a;

12 GCD_ACCEL->b = b;

13 GCD_ACCEL->valid = 1;

14 while (! GCD_ACCEL->ready){};

15 return GCD_ACCEL->res;

16 }

Listing 3.22: SW and memory-mapped HW implementation of the gcd(a,b)
algorithm.

Table 3.3: Test results for GCD-implementations gcd(a,b) on SW and a memory-
mapped RTL implementation, both using Euclid’s algorithm. The timings include
the startup- and shutdown overhead of the RISC-V VP.

A B SW[s] HW/s]

10154 3019 0.17
101654 3 073 0.17
1051654 3 6.09 0.23
10512654 3 5535 0.74

36546 1051654 0.14 0.17

111

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

Table 3.3 shows the results of five different tests, with an increasing imbalance
between the parameters A and B. As can be seen, the SW run-time increases
faster with a, due to the more efficient implementation on the FPGA. The protocol
overhead becomes negligible even in the sub-second execution time (with ¢ =
1051654 and b = 3), although the HW implementation uses active polling on the
FPGA peripheral.

3.4.4.4 Synthesis Results

For the aforementioned case-studies we measured the resource utilization (area in
terms of LCs, memory in terms of BRAM), the maximum operating frequency f,,q.
and respective synthesis and PNR times. As the PNR process is heuristic driven,
results for the frequency and the tool run times vary for each run. We choose to
average the results over ten randomly seeded runs and provide each result with
their respective standard deviation.

Table 3.4: Synthesis and Place & Route parameters for evaluated designs attached
to responder bridge. Each design refers to an evaluated configuration of peripher-
als. Measured frequencies and times are averaged over ten runs with respective
standard deviation. Area and memory utilization are shown as absolute (#) and
relative (%) to their available resources, which were 7680 LCs and 32 BRAM units,
with a target frequency of 12 MHz.

Peripheral Configuration

Description [unit] GCD Acc. LED LED+2xGPIO iAmaCriO LEDeaett
LCs [#] 1001 568 706 943 1432
LCs [%] 13 7 9 12 18
BRAM [#] 2 2 2 3 3
BRAM [%] 6 6 6 9 9
frnaz [MHZ] 96.86 =4.19 11658 £5.62 113.23+5.7 10047 £3.8 9497 +3.76
Synthesis time [s] 5.3 +£0.08 3934+0.04 4.744+0.08 6.13 £+ 0.05 7.48 £+ 0.08

Place & Route time [s] 2.22 +0.25 1.24+0.16 1.61£022 2.09+0.38 341+£0.12

Table 3.4 shows the results of the synthesis and place & route for the utilized HX8K
FPGA. The table is split into two parts. On the left side each description for the
value is shown. For the LC and BRAM their respective available resources on the
FPGA are shown next to their description. For the maximum operating frequency
fmaz, We configured the PNR with the target frequency of 12 MHz. On the right
side, the five columns show at first the accelerator configuration itself (second

112

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

column) and then the incremental integration of additional peripherals, starting
from only LEDs to a configuration with four peripherals and one accelerator.

For each hardware configuration (i.e. responder bridge plus respective periph-
erals) we collected the logic area in terms of LCs and memory BRAM both in
absolute and relative numbers in respect to the maximum (max. 7680 LCs, 32
BRAM). It should be noted, that the design with the responder bridge proves
to be lightweight, as even on a small FPGA such as the HX8K the area resource
utilization is small (starting with the LEDs configuration at 7%). This result
emphasizes the lightweight property of the proposed HWITL bridge. With this,
many peripherals can be attached and the integration process can be carried on for
a long time into the development process to aid the engineers. Naturally, with the
incremental addition of RTL modules, the maximum frequency f,,,, decreases.

3.4.5 Discussion

During development of the protocol, an appropriate focus should be given to
endianess conversion. The C/C++ data structures are read / written via Unix file
sockets and are thus in the host endianess domain. As the testing and validation
programs for the initator and responder functionalities were mainly used on x86_64
machines (little endian) and a certain object-oriented programming style was
targeted, a part of the integration workload needed to be focused on synchronizing
the exact byte-order between host computer and FPGA.

Another consideration should be given to the simulation vs. wall-clock time syn-
chronization. As the simulation may be faster or slower than the outside (or wall-
clock) time, interfacing with actual devices may either require simulation-time
locking (as done in Subsection 3.4.4.2) or clock synchronization from the VP (as is
provisioned into the protocol commands, see Listing 3.18, Line 10).

Furthermore, the case study utilized a specific physical layer (UART) with a
fixed data rate (115200 baud). The reasoning behind this was the fast setup and
prototyping time, providing a proof of concept for the proposed methodology.
Switching to other protocols and techniques (e.g. I?C, Ethernet, PCle, etc.) will
drastically improve the speed, but requires additional prototyping. Moreover,
as the designed showed an already high f,,,, (around 100MHz) on a small
FPGA family (Lattice Semiconductor HX8K), an additional presumption is a
boost in higher operation frequencies for bigger and faster FPGA families (e.g.
Xilinx Virtex, Kintex or Artix families). These two possible enhancements can
reduce the aforementioned phenomenon of synchronization, as the overhead in
communication and processing can further be reduced.

Even though the case studies were implemented with UART as the physical
layer and a HX8K FPGA at 12MHz, the results demonstrate that the proposed

113

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

methodology is a lightweight approach with adaptability for design needs towards
even better speed or response times.

3.4.6 Conclusion and Future Work

In conclusion, this paper proposed a novel HWITL strategy called VPIL that is
focused on combining transaction- and register transfer layer models, effectively
placing RTL models on FPGAs “in-the-loop” of TLM VPs. It leverages the existing
RISC-V VP infrastructure and enables RTL designers to focus development on their
Unique Selling-Point with a minimal design evaluation cost. The contribution
includes the serial communication protocol and the respective bridge implementa-
tions in SystemC TLM for the initiator and SpinalHDL for the FPGA responder.
The proposed approach was evaluated in separate case-studies that included
modeled peripherals like GPIO banks and a GCD accelerator. To stimulate further
research, the proposed tool and the case-studies will be are publicly available on
GitHub [51].

While already proven practical, the proposed approach also opens up future work
to improve the efficiency and expand the application range of VPIL:

e Use of high performance FPGAs, integrated through a PCle inteface, allow-
ing for a high speed communication interface to development boards with
Xilinx Virtex-7 or Artix 7 FPGAs that offer PCle in an M.2 form factor. This
would add a convenient development method on fast and high performance
FPGAs, that are commonly used for artificial-intelligence accelerator devel-
opment.

e Utilization of FPGAs containing full SoCs (e.g. Xilinx Zyng-7000 SoC se-
ries with ARM Cortex-A9), that combine configurable FPGA fabric and
a commercial SoC. Through such FPGAs, the VP can be executed on the
accompanying SoC in a lightweight Linux environment, communicating via
the VPIL protocol on the FPGA fabric. This could enable a flexible MVP
strategy to scale the complexity between the prototype- and small batch
production phases.

e Support faster interrupts besides polling by using interface mechanisms (e. g.
data-ready (DTR) signal from FTDI-compatible UART devices), to improve
the protocol latency for interrupts. If an interrupt controller is implemented
on the HW (i. e., RISC-V’s CLINT or PLIC), this would allow a more efficient
execution.

e Add efficiency-improving commands to read or write at the same ad-
dress again or the next higher data word. These would be used by
buffering the target address in HW to reduce protocol overhead. While

114

CHAPTER 3. HARDWARE AND ENVIRONMENT MODELING

{read,write}_again would just re-use the last accessed address for im-
proving polling the same remote register (e.g. a UART receive register),
{read,write}_consecutive would increment the address by the register
width (4 bytes) to speed up read / write accesses spanning larger address
spaces (e. g. filling a memory block with encrypted data).

115

Chapter 4
Verification

As established in Chapter 1, it is not enough being able to build embedded systems,
but it is also critical to thoroughly verify these systems. It was shown in the previous
chapter that SystemC models have the main advantage of being modular and
offering many abstraction layers; which renders them ideal as an early evaluation
and reference model for the following HW /SW co-design stages. The engineering
benefits are not the whole aspect, however: Being C/C++ models, the internal
structure of SystemC VPs can be taken to an advantage, as the computer science
community has a strong set of tools for such models. These tools can be categorized
into two main categories from the viewpoint of this thesis: HW- and SW-centric
verification approaches.

Hardware-centric verification approaches focus on the hardware modules (or the
system as a whole), usually by extending the SystemC internals or by leverag-
ing the module’s SystemC interfaces for static and dynamic analysis techniques.
Software-centric verification, on the other side, extends or modifies the hardware
modules themselves (or the environment, for that matter) to gain additional
knowledge about the SW’s behavior.

Both verification targets can then use simulation-based verification (e. g. [137,138])
and the more abstract formal techniques (e.g. [139, 140]). Simulation-based veri-
fication is based around inputs, that may or may not be generated automatically,
and the assurance that the system behaves correctly under these stimuli. Formal
techniques, inversely, start with an abstract specification and prove or disprove
that the underlying Device under Verification (DUV) behaves equivalently. While
formal techniques have the reputation of being more complete, they are also said
to have a high initial formalization hurdle to overcome and to not map to real
world applications. This is not completely true; nonetheless they require a more
rigorous description of the target behavior in formal specification languages (e. g.
[141-143]) with the trade-off being between a highly abstracted description that is
easy to assume correct and then prove, and a detailed description that maps better

116

CHAPTER 4. VERIFICATION

to reality but may contain errors itself. Simulation-based verification approaches
usually deliver quicker results with less focus on a highly abstract description,
making them more attractive for large-scale problems; especially in projects with
fast-changing requirements. Their completeness differs, ranging from little (e.g.
fuzzing techniques) to possibly complete (e. g. symbolic execution) depending on
the actual technique and how much time is given to the verification runs.
Regardless of the concrete verification tools used, a considerable effort in the
industry is undertaken to verify hardware models as early as possible [140] to
detect specification [138], design [144], and implementation flaws [90] before
the first hardware revision is manufactured. This speed is crucial; the later such
problems are found, the more the respective fix-up will cost [29]. Additionally, in
a world where consumer products are churned out in ever faster product cycles, a
late-found issue is very likely to be either ignored or just fixed with the smallest
effort possible, leaving deployed systems vulnerable.

As stated earlier, the first section proposes an effective approach for verification
of real-world SystemC TLM peripherals using modern C++ symbolic execution
tools (Section 4.1). The previously missing verification opportunities in the early
VPs inhibit the use of intermediate models as golden reference models, which this
approach aims to solve. It features a lightweight SystemC peripheral kernel (Pe-
ripheral Kernel (PK)) that enables an efficient integration with the modern symbolic
execution engine KLee and acts as a drop-in replacement for the normal SystemC
kernel on pre-processed TLM peripherals. The pre-processing step essentially
replaces context switches in SystemC threads with normal function calls which
can be handled by Kiee. The following experiments, using a publicly available
RISC-V specific interrupt controller, demonstrate the scalability and bug hunting
effectiveness of the approach.

Section 4.2 extends on this idea to include the functionality needed for RTL-
models that have been elevated to SystemC. In contrast to the previous TLM-only
implementation of the PK, this includes the communication overhead of SystemC
signals and sockets. With this added compatibility, actual RTL models can be cross-
level verified against their TLM counterparts or directly be verified with the use of
regular test-benches.

Section 4.3 finally presents a novel approach that enables early and accurate
Dynamic Information Flow Tracking (DIFT) of binaries targeting embedded sys-
tems with custom peripherals. As avoiding security vulnerabilities is critical for
embedded systems (as introduced in Section 1.1), a lot of different verification
methods exist. This section focuses on Dynamic Information Flow Tracking, which
is a powerful technique to analyze SW with respect to security policies in order to
protect the system against a broad range of security related exploits. However,
existing DIFT approaches either do not exist for VPs or fail to model complex

117

CHAPTER 4. VERIFICATION

hardware/software interactions. Leveraging the SystemC framework, the pro-
posed DIFT engine tracks accurate data flow information alongside the program
execution to detect violations of security policies at run-time, enabling an early
security policy evaluation for high-quality VPs. The effectiveness and applicability
of the proposed approach is shown by extensive experiments, including a buffer-
overflow attack suite and the analysis of an Advanced Encryption Standard (AES)
encryption peripheral.

118

CHAPTER 4. VERIFICATION

4.1 Verifying SystemC TLM Peripherals using Mod-
ern C++ Symbolic Execution Tools

This section includes and extends published material from the conference pa-
per [46]. It starts with an introduction into the need of verification techniques
for HW models in Subsection 4.1.1, and gives an overview over related work and
approaches worthy of note in Subsection 4.1.2. Following in Subsection 4.1.4,
the main approach is presented and explained in detail, including the thread-
to-function translation in Subsection 4.1.4.2, the proposed replacement kernel in
Subsection 4.1.4.3, and the usage of symbolic execution in Subsection 4.1.4.4. The
experimental setup is described in Subsection 4.1.5, including an overview into the
different test classes (Subsection 4.1.5.1), and is evaluated in Subsections 4.1.5.2
and 4.1.5.3. A second case-study about a sensor peripheral, not published in
the original conference paper, is featured in Subsection 4.1.5.4. The subsection is
discussed and concluded in Subsection 4.1.6 with a lookout to future work.

4.1.1 Introduction

As noted in Section 2.2, SystemC in combination with the TLM style has become
an industrial standard for creating advanced VPs. A VP is essentially an abstract
executable model of the entire hardware platform which is leveraged for early
software development and acts as a reference model for the subsequent hardware
design flow steps. Early and thorough verification of SystemC-based VPs is very
important to avoid propagation of errors and the associated costly iterations for
fixing them. Beside the instruction set simulator, which is an abstract model of
the processor, TLM peripherals, such as an interrupt controller, are a central part
of VPs. TLM peripherals rely on common modeling standards to describe the
register interface, according to a device memory map, and provide a TLM interface
to implement (software-driven) read and write accesses. The actual functionality
is implemented through SystemC threads that leverage the event driven semantics
of the SystemC kernel for synchronization. Application of formal verification tech-
niques on TLM peripherals is very challenging as it needs to support the intricate
TLM periperhal modeling semantics in combination with the simulation semantics
of the SystemC kernel. Existing methods commonly rely on formal intermediate
representations to capture the TLM peripheral semantics, which require significant
effort to derive, do not scale to advanced SystemC TLM peripherals, or do not
support core features of the SystemC kernel (see Subsection 4.1.2)

To mitigate these issues, in this section proposes an effective approach for veri-
fication of real-world SystemC TLM peripherals by using modern C++ symbolic

119

CHAPTER 4. VERIFICATION

execution tools. The proposed approach consists of three main parts: Firstly, a Sys-
temC thread transformation pre-processing step to enable replacement of context
switching in threads with normal function calls, which is the main reason why an
unmodified SystemC is incompatible with Kree. Secondly, a new SystemC library
called Peripheral Kernel (PK) that essentially acts as a drop-in replacement for the
normal SystemC kernel on the pre-processed TLM peripherals. It implements all
necessary interfaces which are used by advanced SystemC TLM peripherals. At
the same time, the PK is much more lightweight by focusing only on relevant
interfaces and integrating optimization procedures tailored to support symbolic
execution engines. Thirdly, an existing state-of-the-art symbolic execution tool
like Kree [145] to verify (symbolic) properties specified for the TLM peripheral
by means of assertions and assumptions embedded in a test-bench. As a case-
study, verification results for a RISC-V specific PLIC [16] are reported. The PLIC
is used in the open source virtual prototyping environment of the RISC-V VP (see
Section 3.1) for the SiFive FE310 SoC [92]. The PLIC provides interrupt handling
capabilities supporting several operating systems such as Zephyr and FreeRTOS.
The proposed approach has been scalable and proven to be effective in verification
measures. It found new, previously unknown bugs in the PLIC, as well as injected
faults causing intricate bugs, which were detected in a short time. To stimulate
further research, the proposed PK together with the experimental setup is openly
available [47] as always.

4.1.2 Related Work

Formal verification of SystemC [4] designs is both important and also challeng-
ing [140, 146]. Therefore, it has received significant attention from the research
community. Early efforts, for example [147-150], have very limited scalability or
do not model the SystemC simulation semantics thoroughly [151]. Furthermore,
they are mostly geared towards RTL signal-based communication.

More recent approaches are specifically targeting high-level SystemC designs that
are in general suitable to capture the TLM semantics [5]. As a result, a set of
SystemC verification tools have emerged. KRATOS [98] employs a model checking
algorithm based on symbolic lazy abstraction and accepts an intermediate C
input language with simple assertions. SCIVER [152] operates on sequential C
models and leverages high-level induction techniques to check temporal prop-
erties [153]. SDSS[154] formalizes the semantics of SystemC designs in terms
of Kripke structures and then applies a bounded model checking algorithm. In
a follow-up work [155], the approach has also been optimized with state space
reduction techniques based on Partial Order Reduction (POR). SISSI [156] defines
the Intermediate Verification Language format and employs stateful symbolic

120

CHAPTER 4. VERIFICATION

simulation techniques in combination with POR to deal efficiently with cyclic
state spaces. For optimization purposes, native execution techniques have been
leveraged [157]. STATE [158] translates SystemC designs to timed automata and
verifies properties formulated on the timed automata using the UPPAAL model
checker. In the context of these approaches, an extensive set of academic SystemC
benchmarks is available. However, from a practical perspective, these approaches
are still limited since due to their employed intermediate formalizations, and thus
are not easily applicable to real-world VPs.

Other recent approaches have attempted to tackle this challenge: A first attempt
has been made in [159], where the successful application of [160] on a simplified
ARM AHB TLM-2.0 model is reported. In a follow-up work [161], slicing-based
techniques are investigated to improve scalability and results on the verification of
a FIFO-queue and a packet switch are reported. However, the specific modeling
challenges of TLM peripherals have not been considered.

Another recent approach [162] addresses this real world application issue specifi-
cally. The authors propose a XIVL formal intermediate representation that bridges
the modeling gap of TLM peripherals with the formal language employed by
the SISSI verification tool. While the approach has shown promising results in
verifying formal properties on an interrupt controller, it still requires significant
effort to (manually) transform a SystemC model into the XIVL. In contrast, the
proposed approach operates directly on the C++ code and can thus also benefit
from recent advances in modern symbolic execution engines tailored for C++.
Also worth considering is the approach of Yang et al. [163], which leverages
the KLee symbolic execution engine to generate test cases for SystemC modules
that provide a high (branch) coverage. The approach also needs to integrate a
customized scheduler to cover the SystemC simulation semantics and has reported
very promising results in testing different SystemC designs. However, only the
high-level synthesizable subset [164] of SystemC is supported by that approach.
Moreover, it only supports static sensitivity to a single clock edge and does not
allow the use of sc_events, which is a common modeling requirement for TLM
peripherals. Therefore, this approach does not support the verification of TLM
peripherals as considered in this case-study.

In contrast, this section proposes a modular verification platform featuring freely
available off-the-shelf symbolic execution frameworks to speed up the verification
process in the early design phases using re-usable test-benches, suitable for CI/CD

pipelines.

121

CHAPTER 4. VERIFICATION

PLIC

trigger_irq(id) N
= »1 irg_pending irg_priority Bus
N . /
T irq_threshold A+
| | | claim_response /
trigger_external_irq()

run() { :
HABT()‘ wait() *

HARTn<{ 3 | hart_eip

Figure 4.1: 1/O Ports of the Platform Level Interrupt Controller. Elements with
sharp corners are registers, managed by logic in the main run() method. The
external interrupt pending (hart_eip) registers are private variables used for sup-
pressing interrupt re-triggers and exist for every HART. Priority, threshold and
the claim/response registers are duplicated for every interrupt.

4.1.3 Preliminaries - PLIC

This subsection provides relevant background information on the RISC-V specific
PLIC implementation.

The Platform Level Interrupt Controller is specified by the RISC-V instruction
set architecture [16]. It manages incoming, global interrupts and notifies the
Hardware Threads (HARTS), i.e. the individual processor cores. It contains a
set of registers for each HART where the processor can assign a priority and
a notification threshold for each interrupt (see Figure 4.1). When an external
interrupt fires, it sets an interrupt pending bit to the corresponding position in an
internal register. Then, the PLIC will decide, based on the interrupt’s assigned
priority and its threshold, if a notification is passed to the individual HARTs (via
trigger external irq()).

After an interrupt notification, a HART may check pending interrupts in the
claim/response register via the memory-mapped interface. The HART finishes the
completion of the interrupt by writing back the corresponding interrupt ID to the
claim/response register. If other interrupts of less priority are pending, the PLIC
will re-trigger all HARTSs based on their individual threshold after that. Citing the
official specification: “A priority value of 0 is reserved to mean never interrupt and
effectively disables the interrupt. Priority 1 is the lowest active priority while the

122

CHAPTER 4. VERIFICATION

maximum level of priority depends on PLIC implementation. Ties between global
interrupts of the same priority are broken by the interrupt ID; interrupts with the
lowest ID has the highest effective priority” [165].

4.1.4 TLM Peripheral Verification via Symbolic Execution

In this subsection, the proposed approach for verification of TLM peripherals via
symbolic execution is presented in detail.

4.1.4.1 Overview

1

TLM Peripheral | SystemC Kernel

(DUV)
T 2) % """"""""" % """" |
i v, © '@ !
: Translated DUV |<—| Peripheral Kernel |
1
i Outputs Inputs Library | Scheduler | 1
I TLM + Custom TLM + Custom :
1 4 :
i Testbench |[«——| Klee interface i
| :
1
1
1

C++ Source Code

Clang compiw
A
LLVM

5 6
? LLVM IR —»? Executable

\

[Klee] replay found testcases

Symbolic Execution

Figure 4.2: Overview of the verification approach using the proposed PK. High-
lighted in green are the user-defined parts, in brown are the provided elements,
and blue are existing tools.

Figure 4.2 shows an overview over the verification process with the proposed
approach. Starting-point is a SystemC TLM peripheral ®© which is the DUV. It

123

CHAPTER 4. VERIFICATION

provides a TLM interface to communicate with other devices embedded in a
virtual prototyping environment, and interacts with the SystemC kernel. The
complexity of the SystemC kernel makes it very difficult to apply symbolic ex-
ecution techniques for verification purposes of the DUV directly. In particular,
the SystemC thread scheduling mechanism that relies on context switches and
heavyweight data structures, such as floating point based sc_time implemen-
tations, lead to significant performance bottlenecks in symbolic execution tools,
up to the point of being unsupported. Therefore, in a first pre-processing step,
the DUV is translated @ by transforming its userspace-scheduling styled threads
into classic function calls. In addition, a Peripheral Kernel (PK, ®) is provided
as a drop-in replacement for the SystemC kernel on the translated DUV, with
a compatible library and an optimized scheduling mechanism. The proposed
PK provides all necessary interfaces which are used by advanced SystemC TLM
peripherals. At the same time, it is much more lightweight by focusing only on
relevant interfaces and integrating optimization procedures tailored to support
symbolic execution engines. More details on the translation step and the PK can
be found in Subsection 4.1.4.2 and Subsection 4.1.4.3, respectively.

test-benches @ are user-provided for verification purposes. They interact with the
translated DUV using the standard TLM interface (e. g. to read/write TLM regis-
ters) as well as custom interface functions (e.g. an interrupt line in an interrupt
controller). Assumptions and assertions can now be embedded in the test-bench
to specify symbolic input parameters and check the output behavior, respectively.
This setup enables verification engineers to write very fine-grained yet generalized
tests to enable a broad coverage and search for previously unknown corner-cases
via symbolic execution. This case-study leverages KL, a state-of-the-art symbolic
execution engine for C/C++, which provides a set of interface functions to declare
and reason about symbolic expressions.

Each test-bench is compiled together with the translated DUV, PK and Ktk
interface into a single LLVM Immediate Representation (IR, ®) using the Clang
C++ compiler. The LLVM IR is analyzed using the KrLee symbolic execution
engine. KLEe performs a symbolic state space exploration searching for errors on
the symbolic execution paths. An error may be an assertion evaluated to false,
an invalid memory access (segmentation fault, array-out-of-bounds), a software
trap such as a division by zero, or an unhandled exception. For every error, a
counterexample, i.e. concrete assignment for symbolic inputs, is generated by
Kiee. It allows to reproduce the error and replay the test-bench execution for
debugging purposes. For convenience, the IR bytecode can be compiled into a
machine-native Executable (© so that a classical debugger can be attached to analyse
the counterexamples.

124

CHAPTER 4. VERIFICATION

In the following, more details on the translation step @ and the proposed PK ® will
be given in subections 4.1.4.2 and 4.1.4.3, respectively.

4.1.4.2 Thread to Function Translation

As already mentioned in Section 2.2, SystemC incorporates optimized user-space
scheduling as implementation of the thread/method model. This user-space
scheduling however, despite its benefits, throws off analysis tools like valgrind
and especially hinders symbolic execution engines. Typical behavior of these tools
is then to either silently drop possible paths (under-approximation) or try out all
possibilities by brute force (prohibitive time consumption). A thread to function
translation is the key idea in enabling the symbolic execution through Kikg, as
the SystemC userspace-scheduling implementations are incompatible with KreEs
interpreter.

1 void run() {

2 while (true) {

3 sc_core::wait(e_run);

4 for (unsigned i = 0; i < NumberCores; ++i) {

5 if ('hart_eipl[il) {

6 if (hart_has_pending_enabled_interrupts(i)) {
7 hart_eip[i] = true;

8 target_harts[i]l->trigger_external_interrupt();
9 }

10 }

11 }

12 }

13

Listing 4.1: Original SystemC run process of the PLIC from the open source
RISC-V VP. The e_run event is used for synchronization with a new incoming
interrupt. The function on Line 6 implements the priority calculation.

Unlike SystemC, the context of a yielding process is not saved in this return-based
scheduling scheme. Thus, the translation essentially works by moving local into
static variables to preserve them across function calls and embedding Finite State
Machine (FSM) logic with goto statements to interrupt and resume the function
at the right position on each context switch. This translation allows to preserve
the execution context across multiple function calls and thus models the SystemC
thread semantic. For illustration, Listing 4.1 shows a SystemC thread (from the
PLIC TLM peripheral) called run and Listing 4.2 the resulting thread function
after the translation process. The translated function consists of a header (Lines 2
to 14) and body (Lines 16 to 33) part. The header consists of goto statements to
dispatch execution according to the context switch semantic. The current position
in the thread function is stored in the newly introduced static position variable,

125

CHAPTER 4. VERIFICATION

which is an enum of type Label (Line7). A label is provided for the first execution
(init) and each wait function call (1b11 in this example). The body is a copy of
the SystemC thread body where each wait function is annotated with appropriate
context switch logic. It saves the current position (Line 20) before exiting the
function (Line 21). A corresponding label is added for this position (Line 5). To
support the translation process, a Python script was built that automates these
transformation steps for the DUV threads.

1 void run() {

2 //--[header begin J-----
3 enum class Label {

4 init,

5 1bl1,

6 g

7 static Label position = Label::init;
8 switch (position) {

9 case Label::1bl1l:

10 goto LBL1;

11 default:

12 break;

13 }

14 //--[header end J-----

15
16 //--[body begin J-----
17 while (true) {

18 // context switch (i.e. wait) transformation

19 sc_core::wait(e_run);

20 position = Label::1bl1l;

21 return;

22 LBL1:

23 // unmodified logic of the original run thread

24 for (unsigned i=0; i<NumberCores; ++i) {

25 if (thart_eipl[il) {

26 if (hart_has_pending_enabled_interrupts(i)) {
27 hart_eip[i] = true;

28 target_harts[i]l->trigger_external_interrupt();
29 ¥

30 }

31 }

32 }

33 //--[body end]-----

34 }

Listing 4.2: Translated SystemC run process of the PLIC.

4.1.4.3 Peripheral Kernel

The Peripheral Kernel (PK) is designed to be used as a drop-in replacement for
the actual SystemC kernel. Figure 4.3 shows an overview of the PK architecture
and integration. It consists of a SystemC compatible library (top left of Figure 4.3),
matching wrapper macros (top of Figure 4.3), and the PK scheduler (bottom left
of Figure 4.3) itself. It incorporates a pre-processor macro wrapper that maps

126

CHAPTER 4. VERIFICATION

SystemC macros like SC_HAS_PROCESS to automatically register to the replacement
kernel. As SystemC modules are designed to be modular and interact with the
environment via defined functions and interfaces, the proposed PK library can
connect to these with custom, lightweight, SystemC classes that the DUV in the
test-bench will link to. Symbolic execution engines typically save and re-start the
execution context of individual branches of the program, so the slimmed down
PK library enables faster spawning of states. Especially the sc_time calculation
routines need to be re-designed to use integer arithmetic wherever possible, to
both speed up the symbolic execution and expand the possibilities for symbolic
propagation. This is necessary, as KLe currently does not support floating-point
operations and concretizes these values.

As in SystemC, macros like SC_HAS_PROCESS () are used to register threads or pro-
cesses to the simulation context of the proposed PK scheduler. The scheduler keeps
track of waiting processes, scheduled events and the simulation time. E.g., when
a translated process waits for a specified time or an event, it will be placed into a
wakelist. These waiting processes are managed in a sorted list. Every simulation
step advances the global time by the maximum amount possible without skipping
a waiting event, calling all threads that are scheduled for that time. As the SystemC
scheduler is non-deterministic [4], the PK scheduler does not need to incorporate
a special order within multiple threads waiting for the same simulation event.

In summary, the PK is a lightweight implementation focusing on relevant inter-
faces and integrating well-designed and optimized data-structures for SystemC
process scheduling. It serves as foundation to enable an efficient symbolic verifica-
tion process.

4.1.4.4 Symbolic Execution

For the symbolic execution, the source code is compiled into LLVM IR, which is
an intermediate language understood by Kieg, and can be further compiled into
the specific host machine code for native execution. The test-bench uses KLeE to
elevate certain parameters to a symbolic level, but would be valid for “normal”
usage with arbitrary, predefined, values without it. By declaring a parameter as
symbolic, KLee will check all possible branches in the program flow for reachability
during execution. If, within the exploration space and the collected conditions
for symbolic variables, an error occurs, a counterexample with concrete parameter
values is logged. An error may be an assertion evaluated to false, an invalid
memory access (segmentation fault, array-out-of-bounds), a software trap such as
a division by zero, and an unhandled exception. In the case-study’s configuration,
Kiee will only terminate after having visited every reachable path.

127

CHAPTER 4. VERIFICATION

PK library Wrapper SystemC Module DUV
tlm_generic_payload SC_HAS_PROCESS SC_HAS_PROCESS ()
<«—| SC_THREAD - 0 -
sc_event SC_PROCESS SC_TREAD(run)
sc_time
sc_module < sc_event event
sc_simcontext register_b_transport(..)

l run(){
wait(event)
PK scheduler -
}

registered processes :
registered_transports Translated A4
wakelist DUV
globalTime —_ translated_run(){ < Process

Translation

wait(event)

run_next_step() }

Figure 4.3: PK architecture overview with different interfaces for connecting to the
(translated) DUV. Shown are the different interfaces of the SymSysC framework
connecting to the DUV via the proposed wrappers.

4.1.5 Experiments

The proposed approach was implemented for TLM peripheral verification in this
case-study. For evaluation purposes, the PLIC from the open source RISC-V VP is
considered (see Section 3.1). In particular, the FE310 configuration of the PLIC
which is based on the respective FE310 SoC from SiFive [92]: One HART, 51
interrupt sources with 32 priority levels. Implementation-wise, this PLIC uses a
dynamic, synchronous run-method that is sensitive to an sc_event which in turn
is triggered when new interrupts arrive, or on TLM register state changes.

For evaluation, a set of symbolic unit tests is given in the following sections to assess
the PLIC against behavior, timing, and conformance to interface specifications. In
addition to testing the original PLIC with SystemC version 2.3.3 and the PK, a
fault-injection evaluation is also performed to further demonstrate the ability of the
approach in finding intricate TLM peripheral bugs very efficiently. A comparison
with the tools mentioned in related work is not possible because the tools are
either not available publicly, only support custom, intermediate representations
of the system, need a high manual effort to implement the compatibility, or do not

128

CHAPTER 4. VERIFICATION

support the needed instruction set of SystemC TLM Peripherals. All experiments
have been performed on a Linux Fedora 31 with an Intel Xeon 5122 with 3.6 GHz,
and KteE in version 2.2 with the Satisfiability Modulo Theories (SMT) solver STP.
In the following, the layout of the symbolic test-benches (Subsection 4.1.5.1) are de-
scribed. Then, the obtained results in testing the original PLIC (Subsection 4.1.5.2)
as well as the PLIC with faults injected (Subsection 4.1.5.3) are presented, includ-
ing an additional experiment with the simple sensor peripheral that is described in
Chapter 3, Subsection 3.1.8.1.

4.1.5.1 Tests

In total, there are five symbolic tests. Each test feeds symbolic input data through
the standard TLM interface in order to access the TLM registers of the PLIC, or
triggers interrupts for processing using a custom interface function. Assertions
are placed in each respective test to check correct output behavior and (internal)
state changes of the PLIC. In addition, KLEE also searches for generic errors such
as buffer overflows or null pointer dereferences.

In the following, more details are provided on the five symbolic tests chosen
to verify the sanity of the in- and output interface and the interrupt sequence
assumption mentioned in Subsection 4.1.3.

T1 performs a basic interaction test. It triggers a symbolic interrupt and checks if
the correct interrupt is fired within the specified latency, the corresponding pend
ing_interrupt -bit is set, claimable through a TLM transaction, and cleaned up
afterwards.

T2 performs an interrupt sequence test. For illustration purposes, an excerpt of this
test is shown in Listing 4.3. It configures two symbolic (but different) interrupt
lines (Lines 8 to 14) with symbolic priorities (Lines 16 to 17) and triggers them
simultaneously in zero (simulation) time (Lines 19 to 20). After that preparation,
it advances the time to the next event and checks if the interrupt with the higher
priority was fired first (Line 32). If they have the same priority, the one with
lower interrupt ID shall fire first. The test goes then on to check the second, lower
prioritized interrupt for integrity, which is omitted in this listing for readability
reasons.

T3 performs an interrupt masking test. It configures a symbolic interrupt line
with a symbolic priority and sets the consider_threshold to a symbolic value.
It checks if the interrupt is only fired if its priority is both not zero and above the
configured threshold.

T4 performs a TLM read interface test. It triggers an interrupt and starts a TLM
read-transaction at a symbolic address using a symbolic length parameter. This test

129

CHAPTER 4. VERIFICATION

allows to check that the TLM periperhal can handle generic TLM read transactions
and is not missing the handling of specific address ranges.

T5 is similar to T4 but performs a TLM write interface test. It also triggers an
interrupt but then starts a TLM write-transaction at a symbolic address using a
symbolic length parameter and writes up to 1000 bytes of symbolic data.

4.1.5.2 Test Results: Original PLIC

Table 4.1: Test results for the original PLIC. For a Failed result, the number of
detected failures by that test is given in parentheses.

Test | Result | #Exec. Instr. Time [s] Paths Solver
T1 Fail (1) 4330418 1293 64 98.02 %
T2 Pass 8975783 78755 3162 98.82 %
T3 Pass 7027481 66576 967 98.62 %
T4 Fail (3) 38062265 67 1168 74.17 %
T5 Fail (4) 102992556 93383 62017 97.58 %

Table 4.1 shows an overview on the test results for the original PLIC. The first
column reports the performed test. The second column provides the test result.
Each test can either Pass with no errors or Fail with at least one detected error.
In case of a Fail, the number of detected errors by the respective test is given in
parentheses. Please note, KLee does not terminate after the first error is found
but completes the symbolic state space exploration!. The next column # Exec.
Instr. provides the overall number of executed LLVM bytecode instructions. The
remaining columns show the total execution time in seconds (column: Time), the
number of explored symbolic execution paths by KLee (column: Paths) and how
much of the overall execution time was spent in the SMT solver engine of KLEE to
process SMT queries (column: Solver). It can be observed that the solver time vastly
dominates the overall execution time in most tests. Only in T4 the solver queries
are less complex performance-wise, thus resulting in a (symbolic) execution speed
of up to 568 000 instructions per second. The overall runtime varies between 67
seconds for T4 and around 26 hours for T5. Please note that this is the time required
to perform the complete state space exploration, errors are typically found much
faster, which will be discussed further in Subsection 4.1.5.3. Also, the proposed
peripheral kernel has been very important to achieve these runtime results. When
using the normal SystemC kernel, the initialization phase could be completed, but
right at the first scheduling event, KLee crashed with a segmentation fault right

!Only the single execution path that triggers the error is terminated.

130

CHAPTER 4. VERIFICATION

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

void functional_test_itr_priority(

}

PLIC<1, numberInterrupts, maxPriority>& dut) {

Simple_interrupt_target hart(dut); // mock-up hart
// connecting interrupt lime plic -> hart
dut.target_harts [0] = &hart;

uint32_t i = klee_int("i interrupt");
uint32_t j = klee_int("j interrupt");

// generate two walid different interrupt ids
klee_assume (i < numberInterrupts && i > 0);
klee_assume(j < numberInterrupts && j > 0);

klee_assume(i != j);
uint32_t lower_itr = i < j 7 i 38
uint32_t highr_itr =1 > j 7 i Js

dut.trigger_interrupt(i);
dut.trigger_interrupt(j);

pkernel_step(); //advance time to next event

// PLIC should have triggered an external interrupt
assert (hart.was_triggered &&
"HART interrupt was not triggered");

// Is correct Interrupt claimable?
uint32_t first_itr = hart.claim_interrupt();

// Was the itr with the highest prio chosen first?
assert (first_itr == lower_itr &&
"Wrong interrupt was fired first");

assert (hart.was_cleared &&
"Interrupt was not cleared after claim");

pkernel_step(); //advance time to nezt event

//the step should trigger an external interrupt
assert (hart.was_triggered &&
"HART interrupt was not triggered a second time");

// Is correct Interrupt claimable?
uint32_t second_itr = hart.claim_interrupt();

//Was the itr with the lowest prio chosen now?
assert(second_itr == highr_itr &&

"Second interrupt was fired in wrong order");
assert (hart.was_cleared &&

"Interrupt was not cleared after claim");

Listing 4.3: Part of the interrupt priority test (T2). This test contains multiple logic
checks in the form of assertions.

131

CHAPTER 4. VERIFICATION

1 struct Simple_interrupt_target : public external_interrupt_target {
2 bool was_triggered = false;

3 bool was_cleared = false;

4 PLIC<1, numberInterrupts, maxPriority>& dut;

5

6

Simple_interrupt_target (PLIC<1, numberInterrupts, maxPriority>& dut)
— dut (dut) {};

7

8 void trigger_external_interrupt() {

9 assert(!was_triggered &&

10 "interrupt triggered more than once");

11 was_triggered = true;

12 was_cleared = false;

13 }s

14

15 void clear_external_interrupt () {

16 assert (!was_cleared && "interrupt cleared more than once");
17 was_cleared = true;

18 178

19

20 uint32_t claim_interrupt() {

21 assert(was_triggered &&

22 "tried to claim untriggered interrupt target");

23 was_triggered = false;

24

25 sc_core::sc_time delay;

26 tlm::tlm_generic_payload pl;

27 uint32_t interrupt = 0;

28 pl.set_read();

29 pl.set_address (0x200004); //claim_response register

30 pl.set_data_length(sizeof (uint32_t));

31 pl.set_data_ptr(reinterpret_cast<unsigned char*>(&interrupt));
32

33 dut.transport(pl, delay);

34

35 assert(interrupt > 0 &&

36 "interrupt was triggered, but no interrupt in register");
37

38 unsigned idx = interrupt / 32;

39 unsigned off = interrupt 7% 32;

40 assert (((dut.pending_interrupts[idx] & (1 << off)) == 0) &&
41 "pending interrupt shall be reset after read");

42

43 pl.set_write();

44 dut.transport(pl, delay); // clear interrupt

45

46 assert(was_cleared || was_triggered &&

47 "interrupt was either cleared or triggered for another prio");
48

49 return interrupt;

50 }

51 %;

Listing 4.4: Interrupt target used in the tests T1-T3. The target itself contains a
number of assertions already.

132

CHAPTER 4. VERIFICATION

after a mprotect () syscallin the quickthreads implementation. Even after manually
patching the kernel without this syscall, a successful context switch could not be
performed, rendering this approach unsuccessful.

Based on the five introduced tests, six errors in total could be found. They are
described in the following:

F1 is a forgotten assertion in the trigger_interrupt routine. This assertion
checks if the passed interrupt id is valid; i.e. between one and the maximum
number of interrupts. However, this assertion throws an unhandled error that
terminates the program which does not fit into a production grade environment.
Also, when built in release mode, such assertions would not be checked and thus
the program would produce a segmentation fault.

F2 describes a failed assertion checking the 4-byte alignment of a TLM register
access. The correct way to handle failed assertions would be to return a TLM error
state instead of terminating the program. This way, a transaction initiator like a
processor can handle this with a correct exception handler.

F3 defines a failed assertion, similarly to F2, that checks the existence of a TLM
register mapping that can handle the required address.

F4 characterizes a failed assertion, similarly to F2, checking the TLM target register
is registered as writeable in case of a write transaction.

F5 is an unhandled memory access in which a TLM read transaction was accepted
by a register mapping if the address matched a register with a 4-byte aligned
transaction size, that could exceed the actual register boundaries. This leads to
a memcopy () with the source exceeding valid memory addresses.

F6 labels a failed assertion inside the TLM transport register access callback that
was previously thought never to be false. In this case, the address was set to
the interrupt claim_response register. Normally, a interrupt target writes to
the register only after being notified. In this case however, the test initiated the
transaction just after triggering the interrupt before the periodic PLIC thread was
scheduled. This race condition was previously not found in normal operation
because of the high PLIC thread frequency compared to the processor.

The faults could be found respectively by: F1 with T1; F2 to F4 with T4; and F3
to F6 with T5. In the following, more details are provided on how fast each error
was found, and the results on finding additional injected faults that represent other
common and intricate TLM peripheral errors are presented.

4.1.5.3 Test Results: PLIC with Injected Faults

For further evaluation purposes, six additional common (TLM peripheral) bugs
were injected into the PLIC: IF1 to IF6 (see also Table 4.2). These include off-by-one
faults (IF1, IF6), selectively dropping functional parts (IF2, IF4, IF5) and a race-

133

CHAPTER 4. VERIFICATION

condition (IF3). Of these, IF1, IF3 and IF6 have been present in earlier versions of
the PLIC, as can be observed in the GitHub logs in [49]. In the following, more
details are given on these six bugs and then show how fast they are detected with
the proposed approach:

Table 4.2: Classification of the faults injected or found in the PLIC.

Type Instance Ne

Original trigger_interrupt input assertion F1
TLM map 4-bit alignment assertion F2
TLM map register mapping assertion F3
TLM map read-only assertion F4
Out-of-bounds memory read F5
Interrupt claim race condition F6

Injected trigger_interrupt buffer overflow IF1
Interrupt 13 not triggering IF2
Missing re-trigger consecutive interrupts IF3
Interrupt notification too late (position-dependent) IF4
Interrupt 16 not clearing IF5
Priority zero interrupts considered IF6

IF1 changes a check for the highest allowed interrupt number from irq_id < Num
berInterrupts to irq_id <= NumberInterrupts, resulting in a buffer overflow
in the array storing pending interrupts.

IF2 explicitly drops the notification of interrupts with the id 13 after writing to the
correct pending interrupt register.

IF3 skips a necessary re-trigger for another simultaneously waiting interrupt after
claiming the first one. This behavior is particularly hard to debug without well-
suited unit tests.

IF4 artificially increases the event notification for the main thread if interrupt
number is over 32. This shall emulate an error or wrong specification in the timing
model of the Device under Test (DUT).

IF5 returns the interrupt clear routine early if a specific interrupt is being cleared.

IF6 originates in a misinterpretation of the specification that checks if a pending
interrupt priority is greater or equal to the configured threshold, while it shall be
strictly greater than the threshold.

Table 4.3 shows how fast the errors in the original PLIC (F1 to F6) and the PLIC
with injected faults (IF1 to IF6) have been found by the respective tests. It can
be observed that all original bugs are found in less than 3 hours with most bugs
being found in just a few minutes or even less than a minute. The efficiency can

134

CHAPTER 4. VERIFICATION

Table 4.3: Overview on how fast the errors in the original PLIC (F1 to F6) and the
PLIC with injected faults (IF1 to IF6) have been found by the respective tests. The
runtime is given in minutes (except for IF3, given in hours) and rounded to the
next highest integer.

‘ F1 F2 F3 F4 F>5 F6 ‘IFl IF2 IF3 1IF4 IF5 IF6

T1 | Im - - - - - Im 3m - 19m 4m -
™ | - - - - - - - 60m 24h - 105m -
T3 | - - - - - — - - - - - 7m
T4 | - Im Im Im - - - - - - - -
5 | - - Im Im 16m 147m| - - - - - -

be explained by KLee’s symbolic exploration heuristics, which attempt to solve the
most promising paths first and by tracking extensive symbolic constraints among
these paths. The results demonstrate the effectiveness of the proposed approach
in finding relevant bugs in real-world TLM peripherals quickly.

41.54 Test Appendix: Simple Sensor Peripheral

As a second case-study, not included in the original publication [46], the default
simple-sensor peripheral (first described in Subsection 3.1.8.1) was analyzed with
a single test-bench. This peripheral is comparatively simple, so the complete test-
bench could be fully explored by KLeE in under five seconds (see Table 4.4). The
test-bench (Listing 4.5) contains the following number of different checks:

1. Correctly triggering specified interrupt (Listing 4.5, Line 11).
2. General read-accesses to all possible addresses and sizes (Line 28).

3. Correctly returned value range as specified (Lines 40 and 41). Here, KLEE is
especially potent, as the issued rand() is implemented to return symbolic
values.

4. General 4 byte write-accesses to all possible addresses in Line 51.

135

CHAPTER 4. VERIFICATION

1 int main()

2 {

3 uint32_t interrupt = klee_int("Interrupt");
4 SimpleSensor dut(interrupt);

5 test_interrupt_gateway tig;

6 dut.plic = &tig;

7

8

pkernel_step(); // 0
9 pkernel_step(); // 40ms
10 //Test 1: Is triggered interrupt correct?

11 assert (interrupt == tig.triggered_irq);
12
13 sc_core::sc_time delay;

14 tlm::tlm_generic_payload pl;

15 uint32_t address = klee_int("address_read");
16 uint32_t length = klee_int("length_read");
17 const uint32_t max_len = 1000;

18
19 // limit possible length
20 klee_assume (length <= max_len);

21 pl.set_read();

22 pl.set_address (address);

23 pl.set_data_length(length);

24 uint8_t* buffer = new uint8_t[max_len];

25 pl.set_data_ptr(buffer);

26 // Test 2: Read at any address for any given length.
27 // Is there any unezpected output?

28 dut.transport(pl, delay);

29

30 pkernel_step(); // 80ms

31

32 //Test 3: Are returned values in specification?

33 pl.set_read();

34 pl.set_address (0);

35 pl.set_data_length(1);

36 uint8_t rand_value;

37 pl.set_data_ptr (&rand_value);
38 dut.transport(pl, delay);

39

40 assert(rand_value > 48); // In default filter, values shall range in
41 assert (rand_value < 58); // [48 + rand()] 10]

42

43 // Test 4: Write at any address.

44 // Is there any unezpected output?

45 pl.set_write();

46 pl.set_address(klee_int("address_write"));
47 pl.set_data_length(4);

48 uint8_t writel[4];

49 klee_make_symbolic(write, 4, "write data");
50 pl.set_data_ptr(write);

51 dut . transport (pl, delay);

52 [...]

53 }

Listing 4.5: Part of the simple sensor test-bench.

The results of the symbolic execution can be found in Table 4.4. In total, 12
individual faults could be identified, of which 8 were original bugs and 4 were
injected manually (denoted with a *). They can be grouped into the following
types: Specification-, Timing-, and Function faults. As can be seen, the proposed
approach is able to find all of these in a minimal amount of execution time.

136

CHAPTER 4. VERIFICATION

Table 4.4: Simple sensor fault categories and number of individual occurrences. *
indicates a previously unknown fault. Complete path exploration time: 4.465s.

Type Instance # faults
Specification Virtual memory out-of-bounds 2t
Forgotten assertions 3t
Internal data accessible 1
Invalid return value at undefined addresses 2
Invalid sequence of triggering interrupt 1
Timing Response time too long (depending on data) 1
Function No or incorrect interrupt triggered 1
Measured data outside requested bounds 1

41.6 Conclusion

This section proposed an effective approach for verification of real-world SystemC
TLM peripherals by using modern C++ symbolic execution tools. The foundation
of the proposed approach is a lightweight PK that acts as drop-in replacement for
the SystemC kernel and is tailored for enabling the symbolic execution of TLM pe-
ripherals. The PK combines optimized data structures with a simplified function-
based scheduling mechanism that relies on a thread to function transformation
process. As a case-study, verification results are reported for a RISC-V specific
PLIC and an example sensor peripheral that is used in the open source virtual
prototyping environment for the SiFive FE310 SoC. New, previously unknown
bugs could be found in both the PLIC and the sensor peripheral, while it also
could be demonstrated that other intricate bugs can be detected by means of fault-
injection very quickly using KiEg, a state-of-the-art symbolic execution engine for
C/C++. To stimulate further research, the PK together with the experimental setup,
is available as open source in [47] as always.

For future work, it could be promising to investigate additional optimizations of the
PK to further boost symbolic execution performance; and to evaluate the approach
beyond TLM peripherals, both for verification of other SystemC IP components
such as a co-processor and the feasibility to verify whole SystemC projects with a
high number of individual components. Also, it is worth investigating on how the
system behaves and scales if lower-level SystemC primitives like signals are added
to the PK, as described in Section 4.2.

137

CHAPTER 4. VERIFICATION

4.2 Towards Cross-Level Equivalence Testing of Pe-
ripherals using Symbolic Execution Tools

This section contains unpublished material in the form of an extended abstract,
as the experimental evaluation is still ongoing at the time of this writing. This
section starts with an introduction into the key idea of this approach, as well as
related work. In Subsection 4.2.2, the improved verification process is explained
in more detail, along with the extended architecture of the PK. In Subsection 4.2.3,
the initial experimental setup is described. Finally, the conclusion and future work
is presented in Subsection 4.2.4.

4.2.1 Introduction

While the feasibility of symbolic execution of TLM SystemC peripherals have been
shown in Section 4.1, the previous approach still lacks the possibility to efficiently
execute RTL models. This misses the chance of early cross-level verification
approaches during the development of HW RTL models. Existing methods either
focus on formal specifications and TLM models [139] which are not applicable to
lower level HDL Verilog models, or rely on heuristic-based simulation equivalence
checking [166] which is both not complete enough and relies on existing RTL
models.

Besides using VPs as a source of quality in terms of verification level, it is also
possible to lift RTL-HDL models to a SystemC compatible description using tools
like Verilator [167]. This technique enables both equivalence checking, as well as
symbolic execution by re-using the existing SystemC test-benches established in
Subsection 4.1.5. This is in contrast to existing work that either relies on TLM golden
reference models or a formal description of the desired behavior.

While symbolic execution tools are used in classic SW verification [168], the Sys-
temC kernel is hard to execute symbolically because of the scheduling model, x86
assembler instructions, and floating-point arithmetic [46]. Existing approaches
either focus on feature-oriented design methodology [169], which effectively
abstracts away the model’s SystemC interfaces, or ignore the communication
of models altogether [170]. This challenge of actual SystemC kernel execution
hinders further advances in the area of TLM peripheral IP verification.

In this section, an extension to the replacement kernel of SystemC called Peripheral
Kernel (PK, first introduced in Section 4.1), is proposed. The extension focuses
to add support of the SystemC RTL layer system, resulting in the compatibility
of mixed TLM/RTL models. In combination with Verilator, a tool to lift RTL
models written in HDLs to SystemC, this enables the symbolic execution of such

138

CHAPTER 4. VERIFICATION

models. With symbolic execution engines like KLee [145], these models can then be
verified with the existing test-benches, or against already verified TLM models. To
stimulate further research, the proposed PK together with the experimental setup

is made openly available [47].

4.2.2 RTL Peripheral Verification via Symbolic Execution

T Verilog Peripheral
(DUV)

TLM Peripheral
(Reference)

verilate

8
(F Executable

f7>
LLVM

I replay found testcases (

RTL Peripheral
(DUV) SystemC Kernel
Ry ---------------- 3 pammnen
Y @ '
Translated DUV Peripheral Kernel
Outputs Inputs Library | Scheduler
TLM/RTL TLM/RTL

Testbench

=)

-

Klee interface

]

C++ Source Code

Clang compiler }

LLVM IR

/

Klee
kSymboIic Execution

Figure 4.4: Overview of the verification process flow using the proposed PK. High-
lighted in green are the user-defined parts, in brown are the provided elements,
and blue are existing tools.

The main process flow is depicted in Figure 4.4: Compared to the previously
published approach in [46], this includes another translation step. It starts with
the Verilog model (@, on the left) that is verilated @ into a SystemC-compatible
RTL model. This model, containing interface features like signals and ports, then
is translated @ via the thread-to-process method described in Subsection 4.1.4.2.
Through the newly adapted and extended PK &), it then may be interfaced by the
test-benches created by the verification engineers. If a TLM reference model exists,

139

CHAPTER 4. VERIFICATION

it can then also be translated (© and used for cross-level verification in the test-
benches. Next, the test-benches are compiled into LLVM IR @ and symbolically
explored using KLee. As stated in Subsection 4.1.4, KLee performs a symbolic state
space exploration searching for errors on the symbolic execution paths. An error
may be an assertion evaluated to false, an invalid memory access (segmentation
fault, array-out-of-bounds), a software trap such as a division by zero, or an
unhandled exception. For every error, a counterexample, i. e. concrete assignment
for symbolic inputs, is generated by Kiee. It allows to reproduce the error and
replay the test-bench execution in the machine-native executable ® to pin-point
the cause of the errors.

4.2.2.1 Peripheral Kernel

To support SystemC RTL models, the improved PK implements the SystemC
thread/method sensitivity model. In the following, the group of threads and
methods is referred to as processes if both are meant.

SC_MODULE Sensitive PK Scheduler
wake_process(pid,t)
sensitive : Sensitive pids : list<PID> [bi bk » | wakelist :
' list<pair<Time,PID>>
cameiittve ¢ Euamts — operator<<(Event) =---4--- global_time : Time
J operator<<(Port) =---d--- ———— | threads: vector<function>
T operator<<(Signal) ---4--- — | methods: vector<function>
run_next_step() {
SC_METHOD SC_THREAD update_global time();
foreach(f=wakelist(time))
pid = registerMethod(f) pid = registerThread(f) f();
sensitive.addProcess(pid) —| sensitive.addProcess(pid) }

Figure 4.5: The module bring-up phase of the extended PK. Rounded boxes are
classes, while the folded boxes represent macros. The dashed arrows (as in
wake_process(pid, t)) indicate that this operation occurs only after the bring-
up phase, during run-time. Some functions are omitted for clarity, especially the
actual functions of SC_MODULE.

When a module (Figure 4.5, left side) defines methods or threads, it may register
them to the sensitivity list of events, ports, and signals. As the PK scheduler
is function-based to maintain compatibility to symbolic execution engines, the
SC_METHOD and SC_THREAD macros register the function as C++ function bindings.
In contrast to the old PK, this is done in one central vector per type in the PK
scheduler (Figure 4.5, right) with a unique process id called PID. This PID
is referenced in the following sensitivity operators in the module’s constructor
to keep the one-to-many association intact. At the end of the bring-up phase,

140

CHAPTER 4. VERIFICATION

all registered events contain a list of processes they are sensitive to; allowing
them during run-time to wake up all processes (wake_process(pid, time), cf.
Figure 4.6).

Signal : T
Port: T

binding : PortBinding*
posedge_event : Event binding : PortBinding*
negedge_event : Event

operator()(signal)
read() read()
write() write()

PortBinding : T

value : T
sensitive: vector<PID>

read()
write() {
wake_processes();

}

Figure 4.6: Association of the classes Signal and Port in the PK library. A
connection, made in the bring-up phase, will result in a PortBinding. All classes
here are templated based on the signal base type T.

The connections between modules is done through PortBinding structures, that
are created when a SystemC Signal is connected to a Port (see Figure 4.6). Every
thread or method, that is declared sensitive to the port, is registered with its
PID in the sensitive list of the corresponding PortBinding. Upon a write() on
the signal during run-time the value is changed and sensitive processes are woken
up in zero time, i. e. in the current global_time (see Figure 4.5) in accordance to
the SystemC specification.

sc_clock

posedge() {
negedge_event.notify(negedge time);

|}

negedge() {
posedge event.notify(posedge time);

}...

. J

Figure 4.7: sc_clock update mechanism in the PK library.

141

CHAPTER 4. VERIFICATION

To support the SystemC event system fully (including multiple waiting processes),
the event class contains a list of sensitive PIDsjustlike PortBinding (Figure4.6).
Especially sc_clock relies on that behavior (see Figure 4.7) as it re-sets the
posedge_event and posedge_event in a loop. Each notify(time) inserts the
sensitive processes into the PK’s wakelist at the corresponding time.

4.2.3 Experimental Setup

For the proposed experimental setup, the RTL implementation of the Mi-
croRV32 [89,171] called RVPLIC is used. It is written in the HDL Spinal HDL, which
is synthesizable into Verilog and VHDL. As it is based on the RISC-V’s TLM basic
PLIC, it also should conform to the RISC-V ISA specification [16] which is the
subject to this experimental verification.

TLM
trigger_irq(id) Bus ,
> 7
TLM/RTL Bus Interface I/
A /
RVPLIC

trigger_external_irq()

io_sel

io_sb_SBaddress
HA.RT 0= run() { io_sb_SBvalid
: wait() io_sb_SBwdata
T io_sb_SBwrite
HART n < ’ L]

io_sb_SBready

Figure 4.8: The structure of the DUT. TLM transactions are translated by the Bus
Interface to RTL signals for the verilated RVPLIC (yellow).

For the integration into the verification framework, the original RVPLIC is first
verilated into SystemC compatible C++ code, which is then converted by the thread-
to-function method described in Subsection 4.1.4.2. This is already enough for RTL
test-bench verification. For a TLM equivalence verification against the previously
verified RISC-V PLIC, it also needs a TLM/RTL translation (see Figure 4.8). The
common interface of direct interrupt triggering (top left), the HART notification
(bottom left), and the TLM bus (top right) are left unchanged, while the actual
logic is translated by the TLM/RTL Bus Interface (middle). This clocks in the
signals needed to stimulate the RTL RVPLIC on each memory transaction (top
right), and during normal operation via the run() function (bottom left).

142

CHAPTER 4. VERIFICATION

4.2.4 Conclusion and Future Work

In this section, an approach to improve the verification methods for Verilog HDL
models was presented. By adapting the verification process flow, previously pub-
lished in [46], and extending the PK and its libraries, the possibility of symbolically
executing RTL peripherals was enabled. This allows for a complete verification
of such systems either by implementing dedicated test-benches or by cross-level
equivalence testing via previously verified TLM models.

For future work, the proposed experimental setup promises to find interesting
behavioral and interface-level errors once it is conducted in a more thorough case-
study. It is furthermore worth investigating whether this previously unpublished
approach is applicable to a broader range of experiments for evaluation. It also
remains an open question whether the added complexity of fine-grained steps
during the signal update phases result adds a significant impact of verification
run-time, which could be addressed in further studies.

143

CHAPTER 4. VERIFICATION

4.3 Dynamic Information Flow Tracking for Early Se-
curity Policy Validation

This section includes and extends published material from the published confer-
ence paper [45]. The structure is as follows:

The main motivation and the rationale behind security policies in general is
introduced in Subsection 4.3.1, followed by Subsection 4.3.2 that discusses related
work and mentions similar approaches in different fields. The definition of a
security policy, declassification schemes, and the threat model in is given and
introduced in Subsection 4.3.3. Then, in Subsection 4.3.4 the proposed VP-based
DIFT approach for early and accurate verification of binaries targeting embedded
systems with peripherals is presented. Finally, Subsection 4.3.6 describes the
experimental results and Subsection 4.3.7 concludes the section with a discussion
and inspirations for future work.

4.3.1 Introduction

As introduced in Section 2.1, embedded systems are small application-specific
devices with a broad range of applications, from the highest requirements of safety
in automotive or aerospace domains, over medical control systems to consumer
electronics. All of them integrate several peripherals (devices) alongside the CPU
core and extensively rely on embedded SW for configuration as well as complex
functionality and communication. Following the trend of relying human life on
an ever-growing number of embedded systems, avoiding security vulnerabilities
in the embedded SW and HW is crucial to prevent leaking sensitive information
or compromising safety. Besides functional verification on chip level and on the
highest SW level, the verification of the SW/HW interaction level was previously
either too late or not extensive enough.

Dynamic Information Flow Tracking [172, 173] is a powerful technique to analyze
and protect software against a broad range of security related exploits by tracking
and checking the information flow between inputs and outputs alongside the SW
execution. Therefore, the DIFT engine is configured according to a security policy
that essentially specifies the classification of input data, the rules of propagation
(Information Flow Policy, IFP) and what kind of information is allowed to leave
the system at which output interfaces (clearance) [174]. A security policy enables
the specification of several fine-grained Access Control Models (ACMs) including
confidentiality (secret data must not leak to untrusted places) as well as integrity
(untrusted data must not influence sensitive registers/data).

While several SW- and HW-based approaches for DIFT have been proposed,

144

CHAPTER 4. VERIFICATION

they suffer from deficiencies if SW targeting embedded systems is considered:
i) SW-based approaches do not consider the HW in sufficient details and thus
are susceptible to miss complex HW/SW interactions, e.g. due to interrupts,
memory-mapped peripheral access as well as DMA controllers, and ii) HW-based
approaches can only be used once the HW is available, hence the development and
validation of security policies has to wait until then. At the same time, the security
policy has influence on the SW development and HW design, hence it is important
to consider security policies early in the design flow to avoid costly iterations.

In this section, a novel approach is presented that enables early and accurate DIFT
of SW binaries targeting embedded systems. The approach works by integrating
the DIFT engine in combination with the security policy into the VP (cf. Section 3.1)
of an embedded system. As a recap, VPs are essentially executable SW models
of the entire HW platform, and they are pre-dominantely implemented in IEEE-
1666 SystemC [4] employing TLM [5] for abstract communication, and hence very
fast simulation. Therefore, VPs are heavily used for early SW development and
design space exploration [56, 175]. This section’s approach extends the VP use-
cases to early development and validation of security policies. Leveraging the VP,
the proposed DIFT engine can track information flow on the embedded binary
taking fine-grained HW/SW interactions into account. As SystemC is a C++ class
library, the C++ features of templates and operator overloading can be leveraged
to enable a transparent and virtually non-intrusive integration into the VP. The
effectiveness and applicability of this approach will be demonstrated in several
RISC-V experiments. This includes the development of a security policy for a car
engine immobilizer, the detection of code injections, as well as the evaluation of
the performance overhead.To stimulate further research, this implementation is
published as open source in [50].

Summarizing, the major contributions of this section are:

e VP-based DIFT on embedded binary taking fine-grained HW/SW interac-
tions into account

e Early development and validation of security policies, before the HW is
available

e Transparent and virtually non-intrusive integration in the RISC-V VP

e Moderate performance overhead using VP-based DIFT

4.3.2 Related Work

Several HW-based DIFT approaches have been proposed. For example [176—
179] focus on integration of DIFT into processor cores. There are also some
approaches for extending DIFT support to the whole SoC [180-182]. Finally,

145

CHAPTER 4. VERIFICATION

several approaches consider DIFT at RTL and gate-level in general [183, 184]. HW-
based DIFT is complementary to the RISC-V VP-based DIFT, since the proposed
approach enables early development and validation of security policies before the
HW is available. In addition, requirements for the HW mechanisms can be derived.
There also exist various SW-based DIFT approaches, e. g. [185-187], and methods
based on static analysis and symbolic execution focusing on security validation,
e.g. [188-190]. However, due to the source-level abstraction it is very challenging
to provide accurate models for peripherals and to consider complex HW/SW
interactions such as interrupts and DMA accurately. [172] integrated a DIFT
engine into the Bochs x86 emulator to enable DIFT of SW binaries with full platform
support. [191] is conceptually similar but uses QEMU. However, these approaches
only target very specific security aspects (integrity-based validation [172] and
malware detection [191]) instead of generic security policies, and only offer limited
support for data flows outside of the CPU which are necessary to track fine grained
HW/SW interactions. In addition, they do not support SystemC-based VPs, which
is an industry-proven modeling standard (IEEE-1666, [4]).

Finally, an approach for SoC security validation using VPs has been proposed
in [192]. However, the approach targets to find security vulnerabilities in the
VP model, i.e. the HW. In [193] a dynamic VP-based information flow tracking
method for security validation has been introduced. However, the approach only
supports a much simpler security policy and threat model compared to this work.
Overall, a VP-based generic binary-level DIFT approach specifically tailored for
embedded SW binaries was previously not available.

4.3.3 Preliminaries: Security Policies and Threat Model

This subsection explains a more practical definition of security policies and how
they can be applied to real-world systems. It shows that arbitrary security schemes
like confidentiality and integrity can be simultaneously mapped to a single security
lattice. This explanation is followed by a discussion about declassification issues
and how to handle them. Finally, it concludes with the considered threat model of
this approach.

4.3.3.1 Security Policy

A security policy consists of three parts: (i) the classification which assigns security
classes to data that enters the system, (ii) the Information Flow Policy which
is a lattice of security classes that describes the allowed information flow in the
system and how the combination of differently labeled data is computed when
the data propagates through the system, and (iii) the clearance which assigns

146

CHAPTER 4. VERIFICATION

F_onﬁdentiality Igtegrity g_onﬁdentiality & Integrity

<« L]
e B

7
L

1

" iFp-2
Legend: ———) allowedFlow (transitive) = ====== P> declassification (optional)
HC=High-Confidentiality, LC=Low-Confidentiality, HI=High-Integrity, LI=Low-Integrity

Figure 4.9: Three example IFPs. IFP-1 and IFP-2 show a simple policy that models
confidentiality and integrity, respectively. IFP-3 is a natural combination of IFP-1
and IFP-2, thus modeling confidentiality and integrity together.

allowed security classes to system outputs and execution units. Recall that out-
put/execution to/of data labeled with a certain security class is allowed iff the flow
of the given security class X to the output/execution security class Y is allowed
according to the IFP, i.e. there is a (transitive) connection from X to Y (denoted
as allowedFlow(X,Y)).

Security policies enable the specification of several ACMs including confidentiality
(secret data must not leak to untrusted places) as well as integrity (untrusted data
must not influence sensitive registers/data).

In the following, an example is provided to demonstrate the principles of IFPs.

Example 1. Figure 4.9 shows three IFPs. IFP-1 (see left side of Figure 4.9) has two
security classes: High-Confidentiality (HC) and Low-Confidentiality (LC). Data
flow is allowed from LC to HC but not the opposite way, i. e. confidential information is
not allowed to leave the system through an output interface without appropriate clearance.
IFP-2 (see middle of Figure 4.9) only allows data flow from a High-Integrity (HI) to a
Low-Integrity (LI) security class, i.e. untrusted data (LI security class) is not allowed
to influence sensitive data (HI security class).

It is possible to consider confidentiality and integrity together as shown in IFP-3 (right
side of Figure 4.9). IFP-3 is a natural combination of IFP-1 and IFP-2 by combining the
individual security classes (hence, IFP-3 has 4 security classes) and allow a flow iff the
individual flows are allowed in IFP-1 and IFP-2.

147

CHAPTER 4. VERIFICATION

An important operation on an IFP (lattice) is the Least Upper Bound (LUB)
operation. Essentially, the LUB of two security classes A and B denotes the next
security class C that has equal or more restrictive clearance than both A and B.
LUB is used to compute the resulting security class when applying operations (like
addition, shift, etc) on data with different security classes. For example, in IFP-3
the LUB of A=(LC,LI) and B=(HC,HI) is C=(HC,LI) which essentially means that
the resulting data becomes untrusted (as specified in A) but stays confidential (as
specified in B).

4.3.3.2 Declassification

Another important concept is declassification [174, 194, 195]. It allows introducing
fine-grained exceptions to the IFP by selectively changing the security class of
specific data at run-time (cf. red dashed arrows in Figure 4.9). Typically, only
trusted HW peripherals are allowed to declassify data to reduce the risk that an
attacker exploits the declassification mechanism.

The main use case for declassification is to ensure that a system operating with
confidential information can actually interact with the environment. It is a tight
trade-off between strong security properties and controlled release of information,
which may lead to unwanted attack vectors. A concrete example is changing
the data classification to non-confidential after it has been encrypted. This is
needed, as otherwise no encrypted information could be sent out on a public
output interface because it depends on a secret key, even though in practice the
secret key is sufficiently protected with getting only access to the encrypted data.
Another example is a login prompt that provides a very small information about
the internal (secret) information about the password with every attempted login
and thus would be blocked by a strict security policy without declassification.
Thus, declassification is an important concept to ensure that a system operating
with confidential information can interact with the environment. In a practical
view, it heavily depends on the security requirements how declassification can
work in an automated way. Hence, the design engineer is expected to add
declassification requests manually at appropriate places. This can happen in
an iterative way, starting with a strict policy without declassification and only
adding declassification when necessary (i.e. a policy violation is detected by the
proposed approach, which the design engineer deems to be too strict). Since the
SW is considered to be untrusted and contain potentially malicious/erroneous
code, only HW peripherals may declassify data to a lower/different security class
in the case-studies. However, since RISC-V is an easily extensible ISA, custom
CPU instructions can be added to handle declassification from SW. In this case,
it could be done by, e. g., exectuing the instructions only in a privileged mode like

148

CHAPTER 4. VERIFICATION

supervisor mode which can be combined with RISC-V’s physical memory protection
scheme [17].

4.3.3.3 Threat Model

In the following, a threat model is assumed where an attacker can write arbitrary
(malicious) data at every input port of the embedded system. The goal of the
attacker is, for example, to obtain confidential information or destroy the integrity
of the system. The primary attack vector is to exploit functional SW bugs as well as
accidentally included information flows, for example indirect/implicit information
flow or an unsecured debug- or logging port. However, side-channels (e. g. timing
and power) related attacks are not considered in this section.

In this proposed approach it is assumed that the HW is trusted and only the HW
can perform declassification.

The security policy of the system is specified by the (security) engineer. How the
RISC-V VP-based DIFT approach works, and can be used to validate the security
policy, is presented in the next subsection.

4.3.4 DIFT for Embedded Binaries using VPs

The RISC-V VP-based DIFT approach tracks information flow on the binaries for
embedded systems with peripherals. This is performed taking fine-grained HW/SW
interactions into account, i. e. the flow is also tracked within the peripherals and the
way back to the SW. The proposed DIFT engine benefits from the SystemC/C++ fea-
tures of templates and operator overloading to enable a transparent and virtually
non-intrusive integration into the VP.

The following subsections start with an overview of the proposed approach
(Subsection 4.3.4.1), then present more details on the proposed DIFT engine and
VP integration (Subsection 4.3.4.2), and finally present an example scenario in
Subsection 4.3.4.4 to illustrate the specification and encoding of a security policy.

4.3.4.1 Approach Overview

The proposed approach is centered around a VP that represents the target SoC.
An overview of the proposed approach is shown in Figure 4.10. A DIFT engine is
integrated into the VP that enables DIFT at the VP level (see center of Figure 4.10),
along with specified security policies that are encoded into the VP and checked
alongside the SW execution. Please recall from Subsection 4.3.3.1 that a security
policy consists of three components that reason about security classes: 1) classifi-
cation, 2) IFP, and 3) clearance.

149

CHAPTER 4. VERIFICATION

Application - Security Policy
Binary (ELF) VP: Check and Report (Specification)
: Security Policy Violations
load intojmemory and \ generate
Loo-gxecuted ... RN VI

. use . use IFP
Virtual Prototype (VP) | DIFT Engine —> [N Ci e

] Taint Type and Operations Tags (Security Classes)
1 o

1 LUB Function

i allowedFlow Function

Input Classification
Output/Exec. Clearance

VP Annotations I(encode

VP and DIFT combination for early and accurate validation of security policies

Figure 4.10: Overview of the RISC-V VP-based approach for early and accurate
validation of security policies.

Security classes in the DIFT engine are represented as (integer) tags by simply
mapping each security class of the IFP to a unique tag (see first red box on the
right side of Figure 4.10 below IFP implementation). Tags are assigned to input
data (for example a secret key stored in memory or the data generated by a sensor
peripheral) and output interfaces (e.g. the output port of a UART) according
to the classification and clearance mappings, respectively (see left side below
Virtual Prototype in Figure 4.10). In addition, execution clearances are needed to
be specified by assigning tags to specific execution units in the CPU. The concept
of execution clearance is discussed later in Subsection 4.3.4.3 in more detail. To
implement the specified IFP, LUB and allowedFlow() functions are needed that
operate on tags according to the IFP semantics (bottom red boxes on the right side
of Figure 4.10). Based on these two functions, the DIFT engine propagates and
checks the tags, triggering a runtime error upon violation.

4.3.4.2 DIFT Engine

Modeling Security Policies With a given security policy (see Subsection 4.3.3.1),
the modeled system is divided into different security classes and a list of allowed
tlows between them. To integrate this abstract information into the proposed track-
ing extension, firstly the user has to map the classes to unique integer ids in a central
configuration file. This integer ID (also called taint) refers to its specific security
class and is propagated along its data. Secondly, to model the lattice of a give
information flow policy, a combination operator and a relation operator are needed
[196]. To account for the combination operator, the user has to define relations of
allowed flows between security classes in a function. This combination function is
called whenever an operation is applied on two or more operands (e.g. an add-

150

CHAPTER 4. VERIFICATION

instruction) and specifies the security class of the outcome. The relation operator
is called allowedFlow() and is used to determine if an information of a certain
security class may flow to another. It returns true if a path between two security
classes exists, otherwise false. While the functions are free to map a user’s
security layout, it is important that the relation operator is reflexive, transitive and
anti-symmetric to hold the security assumptions mentioned in Subsection 4.3.3.1.

1 static Taint combine(const Taint a, const Taint b) {

2 if (a == b) {

3 return a;

4 } else {

o) MergeStrategy am = static_cast<MergeStrategy>(a & mergeMask);

6 MergeStrategy bm = static_cast<MergeStrategy>(b & mergeMask);

7

8 if (am == MergeStrategy::forbidden || bm == MergeStrategy::forbidden)
9 {

10 throw(TaintingException("merging forbidden by policy"));

11 return O0;

12 }

13 switch (am) {

14 case MergeStrategy::lowest:

15 switch (bm)

16 {

17 case MergeStrategy::lowest: //low: low

18 return a < b ? a : b;

19 case MergeStrategy::highest: //lowest and highest, choose highest
20 return b;

21 case MergeStrategy::none: //lowest and none: demote to none
22 return 0;

23 default:

24 break;

25 }

26 break;

27 case MergeStrategy::highest:

28 switch (bm)

29 {

30 case MergeStrategy::lowest: //lowest and highest, choose highest
31 case MergeStrategy::none: //highest and none: promote to highest
32 return a;

33 case MergeStrategy::highest: //highest: highest

34 return a > b ? a : b;

35 default:

36 break;

37 }

38 break;

39 }

40 }

41 throw(TaintingException("invalid merging policy"));

42 return O0;

43 }

44

45 static bool allowedFlow(const Taint to, const Taint from)

46 {

47 if (to == from) {

48 return true;

49 } elsef{

50 MergeStrategy tom = static_cast<MergeStrategy>(to & mergeMask);
51 MergeStrategy frm = static_cast<MergeStrategy>(from & mergeMask) ;
52 if (frm == MergeStrategy::forbidden || tom == MergeStrategy::forbidden)
53 return false;

54 switch (frm) {

55 case MergeStrategy::lowest:

151

CHAPTER 4. VERIFICATION

56
57
58
59
60
61
62
63
64
65

66 }

//this includes to = nome = 0 < from

return tom == MergeStrategy::highest ? true : from > to;
case MergeStrategy::highest: //high/none to lowest forbidden
case MergeStrategy::none:

return tom == MergeStrategy::lowest 7 false : from < to;
default:

break;
3

}

return false;

Listing 4.6: The two functions necessary to model a security flow policy: The
combination operator and the relation operator.

Implementation Sketch The main ingredient of the proposed DIFT approach is
a custom Taint data type with a template parameter T for the to be tainted data.
Listing 4.7 shows the main code excerpts of the Taint struct: value stores the data
(Line 4) and tag captures the assigned security class (Line 5).

This data type is used to represent CPU and peripheral registers as well as memory
bytes. More precisely, the open-source RISC-V VP (proposed in Section 3.1, [38,
72]) is chosen as a representative example, with the following three modifications
in the SystemC VP model:

1. Replace the register types to use the Taint<int32_t> data type instead of

the native int32_t. With the Taint operator overloading (see Line 33 and
following), the RISC-V instruction execution, e.g. an addition regs[RD] =
regs[RS1] + regs[RS2] , works without any further modification, but now
also performs the tainting with respect to the given security policy (Line 35
shows the addition and Line 36 shows the taint update based on the least
upper bound of both arguments, respectively).

. Integrate execution clearance checks at appropriate locations (primarily to

handle implicit information flows, more details follow in the next section).

3. Adapt the memory interface, which is responsible to translate load/store

instructions into TLM transactions, to support tainted values. To ensure
compatibility with TLM transactions, the Taint data type provides the
to_bytes (Line 12) and from_bytes (Line 18) functions that convert any
Taint (e.g. Taint<uint32_t>) to and from an array of tainted bytes (i.e.
Taint<uint8_t>), respectively. Casting the Taint<uint8_t> array into
a char pointer allows to transparently embed the Taint data array into a
TLM transaction and route it as usual through the bus. The receiving HW
peripheral obtains the Taint<uint8_t> (array) pointer by casting the char
data pointer of the TLM transaction back.

152

CHAPTER 4. VERIFICATION

1 typedef uint8_t Tag;
2 template <typename T>
3 class Taint {

4 T value; // data

5 Tag tag; // security class

6

7 Taint (const T value, const Tag tag) {

8 this->value = value;

9 this->tag = tag;

10 }

11 // convert instance to and from a Taint byte array
12 void to_bytes(Taint<uint8_t> ar[sizeof(T)]) const {
13 for (uint8_t i=0; i<sizeof (T); i++) {

14 ar[i].value = ((uint8_t*) (&value))[il; // copy each byte
15 ar[il.tag = tag; // use the same tag for each byte
16 }

17 }

18 void from_bytes(Taint<uint8_t> ar[sizeof(T)]) {

19 tag = ar[0].tag;

20 for (uint8_t i=0; i<sizeof (T); i++) {

21 tag = LUB(tag, arl[il.tag); // combine all tags
22 ((uint8_t*) (&value)) [i] = ar[il.value; // copy each byte
23 }

24 }

25

26 void check_clearance(uint8_t required_tag) const {
27 if (!allowedFlow(tag, required_tag))

28 throw ClearanceException();

29 }

30

31 // Operator overloading to perform regular operation
32 // according to data of type T _and_ tainting

33 Taint<T> operator+(const Taint<T>& other) {

34 // apply operation and merge tags according to IFP
35 Taint<T> ans(value + other.value);

36 ans.setTag(LUB(tag, other.tag));

37 return ans;

38 }

39 //...other operators implemented similarly...

40 }

Listing 4.7: Code excerpts of custom Taint data type using overloaded operators.

153

CHAPTER 4. VERIFICATION

struct SimpleSensor : public sc_core::sc_module {
tlm_utils::simple_target_socket<SimpleSensor> tsock;
// memory-mapped data frame
std::array<Taint<uint8_t>, 64> data_frame;

// security tag for the generated data
uint8_t data_tag = Taint::LowConf;

9 // register SystemC thread and TLM transport function
10 SC_HAS_PROCESS(SimpleSensor);

11 SimpleSensor(sc_core::sc_module_name) {

12 tsock.register_b_transport(this, &SimpleSensor::transport);
13 SC_THREAD (run) ;

14 }

15 void run() {

16 while (true) {

17 sc_core::wait (25, sc_core::SC_MS); // 40 times per second
18 // fill with random printable data

19 for (auto &n : data_frame) {

20 // generate data of the specified security class

21 n = Taint<uint8_t>(rand() % 96 + 128, data_tag);

22 }

23 // motify interrupt controller (IC) about new sensor data
24 IC->trigger_interrupt (2 /*IRG NUMBER*/);

25 }

26 }

27

28 // the VP bus routes transactions to this function

29 void transport(tlm::tlm_generic_payload &trans, sc_core::sc_time &delay) {
30 auto addr = trans.get_address();

31 auto cmd = trans.get_command();

32 auto len = trans.get_data_length();

33 auto ptr =

34 reinterpret_cast<Taint<uint8_t>*>(trans.get_data_ptr());
35 if (addr <= 63) {

36 // access data frame

37 assert(cmd == tlm::TLM_READ_COMMAND) ;

38 assert ((addr + len) <= data_frame.size());

39 // return last generated random data at requested address
40 memcpy ((void *)ptr, &data_frame[addr],

41 sizeof (Taint<uint8_t>) * len);

42 } else {

43 if (cmd == tlm::TLM_READ_COMMAND) {

44 // the configured security class is mnot confidential

45 *ptr = Taint<uint8_t>(data_tag, Taint::LowConf);

46 } else if (cmd == tlm::TLM_WRITE_COMMAND) {

47 data_tag = *ptr;

48 } else {

49 assert (false && "invalid access);

50 }

51 }

52 }

53 };

Listing 4.8: Implementation of a sensor peripheral using SystemC TLM and the
proposed DIFT approach.

154

CHAPTER 4. VERIFICATION

Besides the CPU of the VP, also some adaptations in the HW peripherals were
done. Listing 4.8 shows a sensor peripheral implementation (other peripherals are
implemented similarly). The sensor contains a memory-mapped 64 byte data frame
(Line 4) using the custom Taint data type to store a tag alongside the value. To
allow the sensor to send confidential or nonconfidential data, an 8 bit data_tag
register (Line 7) was added, in where the security level of the produced data can be
defined from SW. The sensor periodically generates new data in the SystemC run
thread using the configuration as given by the data_tag (Lines 19 to 22). By this,
depending on the concrete application, differently classified sensor sources can be
modeled. SW read/write accesses are routed by the VP’s bus via TLM transactions
to the transport function. The TLM generic_payload provides the transactions
data and size. Based on the transaction type, either a read or a write access is
handled in the sensor peripheral.

To extend the original version of the sensor, only 6 lines of code needed to be
changed (see highlighted lines in Listing 4.8). In Lines 4 and 41 the modifications
were straight forward from uint8_t to Taint<uint8_t>. Line 34 casts the
transport data pointer to an array of tainted bytes instead of the original char
buffer. This convention needs to be adapted in every peripheral that uses TLM
transactions. In Line 21, tagged random data (the sensor’s source) is generated
using the Taint constructor with the tag as the second argument. Note, that
Line 47 does not have to be changed; this is due to the overloaded conversion
routine of the Taint class. This implicit cast to its underlying type (here uint8_t)
requires by default a low confidentiality (LC) tag, throwing an error otherwise.
In summary, the integration of the DIFT engine into the VP (including peripherals)
only affected 6.81 % of lines of code of the original VP, of which 58.7 % are type-
conversions (as seen e. g. in Listing 4.8, Line 4).

4.3.4.3 Execution Clearance

Beside direct information flow from computational instructions and clearance
checks at output interfaces, the DIFT engine has also to consider implicit infor-
mation flow (confidentiality specific aspect) and protection of internal resources
(integrity specific aspect). Three operations in the CPU core can be identified
that are relevant in this context: 1) branch execution, 2) instruction fetching, and
3) memory access. These operations are handled by assigning each of them an
execution clearance (i.e. a security class represented as tag). For example, the
instruction fetch unit performs a clearance check based on its own security class A
and the security class B of the fetched instruction, i. e. it requires allowedFlow (B,
A) == true. For branch instructions the clearance check is performed on the
branch condition and for memory access operations on the address. The execution

155

CHAPTER 4. VERIFICATION

clearance is configurable to let the engineer select the most suitable configuration
(it is specified in the security policy). Furthermore, fine-grained exceptions to the
execution clearance are possible by using declassification (recall Subsection 4.3.3.1)
to selectively change the security class of specific data (e.g. one specific branch
condition) at runtime. Only trusted HW peripherals are allowed to declassify infor-
mation, to reduce the risk that an attacker exploits the declassification mechanism.
The rationale behind this execution clearance problem is discussed in the following
paragraphs for the three operations in the CPU core in more detail:

Branch Execution Observing the control flow can implicitly reveal confidential
information. Consider for example a branch if (secret == 1) then public =
1 with a confidential condition. The control flow dependence of public with
secret allows to infer information about the value of secret by outputting public.
Specifically, either it has the new or the previous value; even though no direct
data flow dependence exists between secret and public. Therefore, control flow
dependencies need to be considered alongside data flow dependencies by the DIFT
engine. However, in the presence of an attacker that may be able to inject code
(by exploiting SW bugs), their computation is very challenging. Requiring an LC
clearance on the branch condition is a safe approximation to avoid leaking sensitive
information. Please note, the same clearance is used to check the interrupt/trap
handler address.

Instruction Fetch Similar to branches, instruction fetching/decoding can also
leak sensitive information. For example; consider a confidential memory word
fetched by the CPU. In case the word is an illegal instruction, a jump to the (SW
error) trap handler is performed. The trap handler may write to public variables,
hence posing a risk of leakage. Also, the behavior of the system changes based
on the fetched instruction which may provide an additional attack surface. This
includes timing and power related side-channel attacks, though this is not the focus
of this work. Again, requiring an LC clearance on the fetched instruction is a safe
approximation to avoid leaking sensitive information.

In addition, to reduce the risk of code injection by exploiting SW bugs, it makes
sense to also use a HI clearance for instruction fetching. This prevents execution of
data from external untrusted sources. However, it still cannot fully prevent code
injection, since an attacker might be able to exploit bugs in the embedded SW to
inject malicious code by re-using trusted code from memory.

Because of this possibility, the SystemC module of the CPU is not able to jump
based on a non-zero tainted register. In Listing 4.9, a part of the branching
instructions are shown. They use the overloaded arithmetic functions defined in

156

CHAPTER 4. VERIFICATION

Listing 4.11. Due to the implicit calls to the proposed conversion functions, no
further adaptions have to be made to the existing instruction set simulator of the
CPU.

A comparison of two registers, e.g. if (regs[instr.rs1()] == regs
[instr.rs2()] first calls the overloaded operator== function (see 4.11, Line 23).
This function returns a boolean that is elevated into the right confidentiality level
or domain, depending on the merging strategy. The tainted boolean is then
converted into the native underlying boolean, calling the conversion operator
on Line 45. The conversion function either returns the actual boolean value, or
throws a run-time tainting exception if the value is on any confidentiality level
other than 0.

1 [oood

2 case Opcode::BEQ:

3 if (regsl[instr.rs1()] == regs[instr.rs2()])
4 pc = last_pc + instr.B_imm();

5 break;

6

7 case Opcode::BNE:

8 if (regslinstr.rs1()] != regs[instr.rs2(01])
9 pc = last_pc + instr.B_imm();

10 break;

11
12 case Opcode::BLT:

13 if (regs[instr.rs1()] < regsl[instr.rs2()])
14 pc = last_pc + instr.B_imm();

15 break;

16

17 case Opcode::BGE:

18 if (regslinstr.rs1()] >= regs[imstr.rs2()])
19 pc = last_pc + instr.B_imm(Q);

20 break;

2l [[oocod

Listing 4.9: The part of the VP CPU instruction set simulator handling branching
instructions. An implicit demotion is attempted in the arithmetic functions of the
tainted registers.

Memory Access A memory access with confidential address can also leak in-
formation. For example consider Mem[secret] = public. Then, the value of
secret may be inferred by querying the memory, e. g. public2 =Mem[i] and check
public == public2 for i = [0,...,int_max]. Even if the value of Mem[secret]
is confidential too, an inference of the secret address is still possible by writing
Mem[0] , Mem[1], etc., to a public output interface and observe if an error is
raised (due to insufficient clearance in case Mem[i] is confidential). Using an LC
clearance on the memory address prevents these attacks.

157

CHAPTER 4. VERIFICATION

4.3.44 Example Scenario: System Description and Security Policy

This subsection describes an exemplary cross-section of a system that uses the
proposed DIFT approach. It shall help with understanding the data flow between
HW and SW.

Scenario Description Consider an SoC with an input sensor, an input/output
UART and a designated memory storing secret data. Intuitively, the security policy
specifies that the secret data is neither leaked nor modified. Hence, as IFP is
possible to use IFP-3 (defined in Subsection 4.3.3.1) and use the security class
(LLLC) to classify sensor input data as well as clearance for the output UART.
The secret key is defined as (HI,HC). IFP-3 has four security classes, hence it uses
four tags in the DIFT engine to distinguish them: tag(LI,LC) = 0, tag(HLLC) =1,
tag(LLHC) = 2, and tag(HILLHC) = 3. More details on the SW side is shown in the
next paragraph, with VP side to be described in the paragraph after that.

SW Side Listing 4.10 shows example SW to be executed on the VP. The SW reads
sensor data into a local buffer (Lines 27 to 28) and writes the result to the UART
peripheral (Lines 32 to 37). The sensor applies a filter that returns values in a
specific range (Line 21). The program registers an interrupt handler for the sensor
(Line 16) to detect when new sensor data is available.

The peripherals (i.e. sensor, UART and the designated memory) are accessed
using memory-mapped I/O. These memory-mapped I/O accesses are routed to
the corresponding peripheral in the VP and processed there. For example, Line 28
is a read access for the local address i from the sensor peripheral that is mapped to
the memory address 0x20000000 in the VP. The secret memory returns data with
tag(HIL,LHC)=3 while the sensor returns data with tag(LI,LC)=0. A write to the
UART TX register address queues the data for printing. Before actually printing
the data to console, the output interface checks that the data has a permitted tag
according to the IFP and its clearance tag(LI,LC) = 0.

In this SW example, a security policy violation is detected in the UART, initiated by
the memory-mapped write access in Line 36. The reason is that in the last iteration
of the for loop, i.e. i = BUF_SIZE, the array access buf [i] overflows beyond the
array bounds resulting in a read of the secret variable, that is placed right after
the buf array on the stack in this example (Line 17). The occurrence of the error
depends on the sensor configuration (Line 21) and hence it is important to also
consider peripherals to obtain accurate results.

VP Side As a recap, Listing 4.8 shows the relevant parts of the corresponding
SystemC TLM sensor peripheral implementation (counterpart for the SW example

158

CHAPTER 4. VERIFICATION

in Listing 4.10 — the other peripherals are implemented similarly). The sensor has
a memory-mapped 64 byte data frame (mapped to local address 0 to 63) and a 32
bit filter register (mapped to local address 64 to 67). Both frame and filter
use the custom Taint data type to store the tag alongside the value.

The sensor periodically generates new data in the SystemC run thread and pro-
cesses it based on the filter value (Lines 19 to 22) which is configurable by the SW.
The data is tagged with tag(LI,LC) (Line 21) using the sensor data tag (Line 7).
SW read/write accesses are routed by the VP bus via TLM transactions to the
transport function (see also Section 2.2). The TLM generic_payload pro-
vides the transaction data and size. Based on the transaction, either a read or
write access is handled in the sensor peripheral. The transaction data pointer
uint8_t* is packed into the Taint data type to pass along the data tag(s) for the
TLM transaction. Here, the to_bytes / from_bytes functions (briefly introduced
in Subsection 4.3.4.2, Line 12) are implicitly used to convert data to and from the
tainted byte array. This allows to implement read /write accesses in a natural way
using the access functions of the Taint data type.

The VP side of this example illustrated how to integrate tainting support into
SystemC-based TLM peripherals.

1 #define NORMAL_RANGE_FILTER 1

2 #define SPECIAL_RANGE_FILTER 2

3 #define BUF_SIZE 64

4 // memory-mapped register (used as input/output)

5 volatile const uint8_t* UART_TX_ADDR = (uint8_t*) 0x10000000;

6 volatile const uint8_t* SENSOR_DATA_ADDR = (uint8_t*) 0x20000000;

7 volatile const uint32_t* SENSOR_FILTER_ADDR = (uint32_t*) 0x20000040;

8 volatile const uint32_t* SECRET_MEM_ADDR = (uint32_t*) 0x30000000;

9 bool sensor_has_data = 0;

10 void sensor_irq_handler() {

11 sensor_has_data=1;

12 /7 [...]

13 }

14

15 int main() {

16 register_interrupt_handler (2 /*SENSOR IR{ NUMBER*/, sensor_irq_handler);

17 uint32_t key = *SECRET_MEM_ADDR; // tag(key) = 3

18 uint8_t buf [BUF_SIZE];

19

20 // config: apply post-process filter to return wvalues in range [0..63]

21 *SENSOR_FILTER_ADDR = NORMAL_RANGE_FILTER;

22 // wait for semsor input

23 while (!sensor_has_data) {

24 asm volatile ("WFI");//WFI=Wait For (any) Interrupt

25 }

26

27 for (int i=0; i<BUF_SIZE; ++i) {

28 buf [i] = *(SENSOR_DATA_ADDR+i); // tag(buf[i]) = 0O

29 }

30

31 // security policy violation due to (read) buffer overflow (loop condition
< should be: i<BUF_SIZE)

32 for (int i=0; i<=BUF_SIZE; ++i) {

159

CHAPTER 4. VERIFICATION

33 if (buf[i] > 127) // stop on large wvalues

34 break;

35 // buffer overflow (on the stack) into the secret key on last iteration

36 *UART_TX_ADDR = buf [i]; // error (will be detected in the UART): buf[BUF_SIZE]

— tag (tag(HI,HC)=3) incompatible to UART_TX output tag (tag(LI,LC)=0), i.e.
— allowedFlow(3,0) is false

37 }
38 return O;
39

Listing 4.10: Example SW to illustrate the approach for checking security policies
by introduction, propagation and checking of tags.

4.3.4.5 Branches with Confidential Conditions

An unintentional data flow may happen through conditional branching based
on a confidential value. Imagine an adversary that leaks confidential data just
by comparing a secret variable with known values, e.g. if (secret == 1) then
notsecret = 1 (see Subsection 4.3.6). With this procedure, the program counter
would implicitly leak information about the secret, even when no assignments
would happen in the conditional branch (e.g. sleepSeconds(secret)). Because
of this possibility, the SystemC module of the configured CPU is not able to
jump based on a non-zero tainted register. In Listing 4.9, a part of the branching
instructions are shown. They use the overloaded arithmetic functions defined
in Listing 4.11. Due to the implicit calls to the conversion functions, no further
adaptions have to be made to the existing instruction set simulator of the CPU. A
comparison of two registers, e. g. if (regs[instr.rs1()] ==regs[instr.rs2()]

first calls the overloaded operator== function (see Listing 4.11, Line 23). This
function returns a boolean that is elevated into the right confidentiality level or
domain, depending on the merging strategy. The tainted boolean is then converted
into the native underlying boolean, calling the conversion operator on Line 45. The
conversion function either returns the actual boolean value, or throws a run-time
tainting exception if the value is on any confidentiality level other than LC.

4.3.5 SystemC TLM-2.0 Compatible Tainting Engine for Virtual
Prototypes

To have fine-grained domain separation, the underlying data types of CPU regis-
ters were expanded to contain one byte of tainting information per byte of usable
data by implementing new generic data types. These data types implement all
arithmetic functions as well as conversions to their underlying base-type to main-
tain full compatibility to the existing functions. This allows a minimal adaption to
the SystemC model.

160

CHAPTER 4. VERIFICATION

1 static Taint mergeTaintingValues(const Taint a, const Taint b) {

2 if (a == b) {

3 return a;

4 } else {

5 MergeStrategy am = static_cast<MergeStrategy>(a & mergeMask);

6 MergeStrategy bm = static_cast<MergeStrategy>(b & mergeMask);

7 if (am !'= bm) {

8 throw(TaintingException("combination of different merging policies"));

9 return O;

10 }

11 switch (am) {

12 case MergeStrategy::forbidden:

13 throw(TaintingException("merging forbidden by policy"));
14 return O;

15 case MergeStrategy::highest:

16 return a > b ? a : b;

17 default:

18 throw(TaintingException("invalid merging policy"));
19 }

20 }

21 }

22} [[oood

23 Taint<bool> operator==(const Taint<T>& other) {

24 Taint<bool> ret(value == other.value);

25 ret.setTaintId(mergeTaintingValues (getTaintId(), other.getTaintId()));
26 return ret;

27 '}

28

29 Taint<bool> operator==(const T& other) {
30 Taint<bool> ret(value == other);

31 ret.setTaintId(getTaintId());

32 return ret;

33 }

34 [...]

35 T demote(Taint level) const {

36 // if forbidden merge policy, the merge throws. If highest, the highest ID may
— only be lower or equal

37 uint8_t max = mergeTaintingValues(getTaintId(), level);

38 if (level < max) {

39 throw TaintingException("Invalid demotion of ID " +
— std::to_string(getTaintId()) + " (allowed: " + std::to_string(level) + ")");
40 }
41 return value;
42 }
43
44 operator T() comnst {
45 return demote(MergeStrategy::nomne);
46 }

Listing 4.11: The part of the VP tainting mechanism handling the merging of
variables, two arithmetic operators and the implicit demotion to the underlying

type.

161

CHAPTER 4. VERIFICATION

The minimal set of adapted modules are the CPU registers and the internal bus.
To save memory overhead, only parts of the internal RAM may accept tainted
data types, if necessary. When other peripherals like the DMA, random number
generator etc. are left unchanged, the default conversion automatically assumes a
low-confidentiality domain LC. Any higher-security data flow would fail to these
devices, if not otherwise stated in the peripherals program code. If a conversion
fails due to the security policy, a run-time error is thrown which may be handled
by the software running on the VP. To simplify the policy enforcement, any
merging strategies between different classified data are defined at a single file that
concentrates all tainting-specific source code.

4.3.6 Experimental Evaluation

The proposed VP-based DIFT approach for early development and validation of
security policies has been implemented by integrating the DIFT engine into the
open-source SystemC TLM RISC-V VP, proposed in Section 3.1. The proposed
approach is evaluated in three steps. First, Subsection 4.3.6.1 presents a case-
study on developing and validating the security policy for an ECU of a car engine
immobilizer. Then, the effectiveness of the proposed approach in detecting code
injection is shown in Subsection 4.3.6.2. Finally, the performance overhead of the
proposed DIFT engine is evaluated in Subsection 4.3.6.3.

4.3.6.1 Security Policy Evaluation: Car Engine Immobilizer

In the first experiment, an ECU of a car engine immobilizer is considered as
case-study . The immobilizer holds a secret key (Personal Identification Number
(PIN)) in memory which is used for a challenge-response protocol together with
the engine’s ECU for authentication. Therefore, the engine sends a challenge
(random number) and the immobilizer returns a response (challenge encrypted
by a PIN using an AES peripheral). The engine holds the same PIN as the
immobilizer and checks the response by performing the same encryption. The
communication channel between the ECUs is established by reading and writing
to a CAN peripheral. Please note, that in this authentication process the PIN is
never exchanged on the CAN bus in plain-text.

The goal is that the PIN is neither leaked (to prevent unauthorized access to the
car) nor modified (to keep the car operational). Thus, the security policy uses
IFP-3 (see Subsection 4.3.3.1) and classifies the key as (HC,HI) and use (LC,LI)
clearance on all input and output devices (including the CAN peripheral). In
addition, the AES peripheral has (HC,HI) clearance and performs declassification,

162

CHAPTER 4. VERIFICATION

i.e. all encrypted data has (LC,LI) classification, so it can be sent out on the CAN
bus.

By running a manually written test-suite, it could be observed that the security
policy is violated because the immobilizer can be instructed to perform a complete
memory dump (including the secret key) on the UART (which was previously
implemented for debugging purposes). This security vulnerability could easily be
fixed by correcting the debug function to exclude the memory region of the key.
For further evaluation purposes, the immobilizer’'s SW was further extended to
include common attack scenarios: 1) directly or indirectly (through an intermedi-
ate buffer or buffer overflow) write the PIN to an output interface, 2) use control
flow instructions that depend on the PIN, and 3) override the PIN in memory
with external data. All attack scenarios have been detected using the proposed
approach successfully.

However, further testing revealed another attack scenario that is still not covered
by the security policy yet. While the current security policy prevents overwriting
the PIN with external data (i.e. LI), it does not protect against overwriting with
trusted data (i.e. HI). Thus, according to the security policy it is still possible to
e. g. overwrite byte 2, byte 3, etc. of the PIN with byte 1. This significantly reduces
the encryption entropy (all bytes in the PIN are equal) and hence enables a brute-
force attack (by trying 256 possibilities) to obtain the PIN byte by byte from the
encrypted response on the CAN bus. This issue can be fixed by modifying the
security policy to use a separate security class for each byte of the PIN, hence
further reducing the risk of a security vulnerability.

4.3.6.2 Code Injection Protection

In the second experiment, effectiveness of the proposed approach in detecting code
injection is evaluated. Therefore, it uses the Wilander-Kamkar buffer overflow
attack suite [197] which has been ported for RISC-V by [177], though some attacks
are not applicable (N/A) in the RISC-V environment, primarily due to differences
in the calling convention [177]. Table 4.5 shows an overview of the attacks. The
suite features several attack patterns that exploit buffer overflows on the stack or
the Heap/BSS/Data segment (column: Location) to target e. g. the return address,
base pointer, function pointer or longjmp buffer (column: Target). The buffer is
either accessed directly or indirectly through a pointer (column: Technique). All
attacks try to inject and execute a pre-defined malicious code payload which is a
serious security breach and may gain the attacker complete access to the system.

To protect against code injection, a security policy based on IFP-2 was chosen. The
memory holding the program is classified as HI during program loading, and the
instruction fetch unit in the CPU is also set to HI clearance, i.e. it will raise an

163

CHAPTER 4. VERIFICATION

Table 4.5: Modified Wilandar-Kamkar buffer overflow test-suite results.

Atk # Location \ Target \ Technique \ Result
1 Stack Function Pointer (param) Direct N/A
2 Stack Longjmp Buffer (param) Direct N/A
3 Stack Return Address Direct Detected
4 Stack Base Pointer Direct N/A
5 Stack Function Pointer (local) Direct Detected
6 Stack Longjmp Buffer Direct Detected
7 Heap/BSS/Data Function Pointer Direct Detected
8 Heap/BSS/Data Longjmp Buffer Direct N/A
9 Stack Function Pointer (param) | Indirect | Detected
10 Stack Longjump Buffer (param) | Indirect | Detected
11 Stack Return Address Indirect | Detected
12 Stack Base Pointer Indirect N/A
13 Stack Function Pointer (local) Indirect | Detected
14 Stack Longjmp Buffer Indirect | Detected
15 Heap/BSS/Data Return Address Indirect N/A
16 Heap/BSS/Data Base Pointer Indirect N/A
17 | Heap/BSS/Data | Function Pointer (local) Indirect | Detected
18 Heap/BSS/Data Longjmp Buffer Indirect N/A

error when fetching instructions with LI classification. All other information in the
system (including data coming from the serial console) is classified as LI. Because
the test-suite features a well-defined function as a representation for malicious
code, this function was specifically classified as LI before conducting the tests. In
a real world scenario, this code would be inserted by external components (e. g.
the terminal) and thus also have an LI security class. With this security policy
all applicable attacks were detected which demonstrates the effectiveness of the
proposed approach in detecting code injection attacks.

4.3.6.3 Performance Overhead Evaluation

To evaluate the performance overhead of the DIFT engine, the execution times
of the proposed approach (denoted VP+) are compared against the original
RISC-V VP (denoted VP). All benchmarks are executed on a Linux machine with
Fedora 29 and an Intel™ i5-8250U processor.

Table 4.6 shows the results. The first three columns report the benchmark name,
the number of executed instructions (column: #instr. exec.) and number of
assembler opcodes (column: LoC ASM in the final binary (which includes linked

164

CHAPTER 4. VERIFICATION

Table 4.6: Results on the performance overhead of the proposed DIFT approach.

) LoC | Sim. Time MIPS
Benchmark #instr. exec. ASM VP VP+ | VP VP4 Ow.
gsort 430,719,182 17,052 | 11.6 183|371 235 | 1.6x
fibonacci 5,999,999,997 14 | 136.1 1914 | 441 31.3 | 1.4x
dhrystone 1,370,010911 17,158 | 39.1 60.1 | 35.1 21.1 | 1.6x
primes 7,114,988,890 16,793 | 186.3 390.0 | 38.1 182 | 2.1x
sha512 7,578,047,617 17,862 | 251.6 4415 | 30.1 17.1 | 1.8x

simple-sensor 1,393,000,060 2970 | 676 83.0|206 16.7 | 1.2x
freertos-tasks 5,937,843,750 11,146 | 141.6 4115 | 419 144 | 2.9x
immo-overflow 931,081,431 17,191 | 26.1 49.1 | 356 189 | 1.8x
immo-fixed 931,083,025 17,188 | 26.1 469 | 356 19.8 | 1.8x

— average — 3,536,527,633 14,309 | 103.4 207.3 | 33.2 17.0 | 2.0x

libraries). The remaining columns compare the simulation time (in seconds) and
MIPS for the RISC-V VP (VP) and VP+, and the resulting performance overhead
of VP+ (column: Ov.). The last row summarizes the results by providing average
values for all benchmarks. The following programs are used as benchmarks: gsort
from the newlib C-library, a recursive fibonacci implementation written in RISC-V
assembler, a standard dhrystone implementation, a prime number generator, the
hash sum function sha512, a simple-sensor application that copies randomly gen-
erated data from a sensor to a UART peripheral, a FreeRTOS application SW
scheduling two interleaved tasks, and the different car immobilizer SW images
(see the previous section).

It can be observed that VP+ is in average a factor of two times slower (worst
and best case at 2.9 times and 1.2 times, respectively) than the original VP on the
benchmark set, which is a very reasonable performance overhead.

4.3.7 Conclusion and Future Work

In this section, a VP-based DIFT approach for embedded binaries was introduced,
taking fine-grained HW/SW interactions into account. This approach supports
a wide range of security policies which can be fully configured by the user.
Moreover, since this approach leverages SystemC-based VPs security policies can
be developed and validated early, i. e. before the HW is available. In addition, the
benefits offered by SystemC and C++ could be utilized; in particular templates and
operator overloading, to design a taint data type that enables a straightforward

165

CHAPTER 4. VERIFICATION

integration of the DIFT engine into the VP platform. Extensive RISC-V experiments
demonstrated the effectiveness of this approach.

For future work, automatic test-case generation methods could be investigated that
consider the SW as well as the VP level (e.g. combined with [96, 198]) and/or
can be tailored for stress-testing security policies. To support the development
and validation process, the performance could be optimized further by leveraging
DBT/]IT instead of interpretation-based execution in the CPU core.

To test (and iteratively refine) the existing confidentiality policies and their en-
coding, including the declassification mechanisms, a (comprehensive) set of test-
cases is required. To help in this process, automatic coverage-driven test-case
generation approaches could be worth investigating. In particular fuzzing and
constrained-random generation techniques are very promising. A combination of
SW and VP (branch) coverage can be used to guide the test generation process. To
close remaining coverage gaps, this method could also be combined with symbolic
execution engines such as SymSysC (described in Section 4.1).

Currently, the proposed system reports a policy violation in case control flow
depends on confidential data. This solution is a safe (over-)approximation to
ensure that no confidential information is leaked. Worth investigating are thus
techniques to provide a more accurate solution to reduce this over-approximation.
A promising idea is to perform a lookahead-based analysis that runs ahead for
a certain number of instructions (based on the current program counter when
reaching a branch instruction with a confidential condition) and analyzes these
instructions (based on the current execution state of the CPU core) to reconstruct at
run-time the control flow of the immediate surroundings (even in the presence of
an attacker that is able to inject code at run-time). Beside using a look ahead limit,
the analysis would also terminate when for example detecting a store instruction
that writes memory close to the current program counter or when the program-
counter is loaded with a register value to ensure that the analysis stays local and
no code is injected in-between.

As a first step, the proposed technique could be used to detect regular control
flows (e.g. resulting from an if-then-else construct) and then mark all dependent
assignments (i. e. inside the if and else branch) to be confidential as well. This is
inherently difficult, however, as side-channels such as interrupt routines can throw
off this estimation.

166

Chapter 5
Conclusion

Complexity of digital systems, combined with an ubiquitous number of devices,
impacts security and safety of human lives on an ever-increasing level. While
the use of embedded systems and ICs in general improved the way of living
considerably, actual [25] and fatality-causing [26] incidences have shown the
necessity of improving the quality of these systems. Especially, the need emerged
tonot only rely on the “quality” of care given by individual developers or designers,
but to actually improve the design processes to a level of trust that meets modern
standards.

In this thesis, an efficient and high-quality design process for complex systems
leveraging architecture-level VPs has been presented. It features several novel
approaches for a fast and thorough design space exploration by simulating and
visualizing on- and off-chip devices for a reliable system specification reducing
the possibility of late, and thus costly, design-reiterations. It further enhances
existing verification techniques like DIFT and symbolic execution on continuous
levels along the system design process, from the earliest stages on. This reduces
the need to rely on single individuals to ace the development, but instead increases
the reliability and repeatability of complex systems.

The different contributions can be summarized into two main fields: Modeling
to expand the possibilities of building new digital computer systems, and Verifi-
cation to expand the trust and to improve the correctness of these systems. The
following individual contributions to the overall process, described in this thesis,
are:

Modeling The first contribution speeds up the system design with an open
source RISC-V VP implemented in SystemC TLM. It is able to run multiple op-
erating systems, including embedded systems like Zephyr and common desktop-
grade systems like Linux. It offers not only the core with the RISC-V instruction
set extensions I, M, A, F and D in both 32 and 64 bit with Sv32, Sv39 and Sv48

167

CHAPTER 5. CONCLUSION

virtual memory translation systems, but also contains a rich set of peripherals
to run whole system simulations. This set includes RISC-V compliant PLIC and
CLINT implementations, as well as ethernet- filesystem- and graphics devices,
and debugging capabilities with the GDB suite. Together with a comparatively
outstanding execution speed compared to other architecture level VPs, it allows a
fast and accurate design space exploration and performance evaluation. It is also
used as the basis for a huge number of consecutive publications, including the ones
of this thesis.

The second contribution further improves the system design process in the form
of a novel, virtual Environment Model GUI which enables emulating off-chip
devices such as sensors, displays and actuators in graphical representation with
mouse and keyboard interaction input. It features a rich set of devices that
can both be modeled in C++ (for execution speed) and the scripting language
Lua (for flexibility and fast bring-up). It has been proven successful in several
experiments for designing PCBs and educational uses. Combined with a further
extended RISC-V VP to incorporate the protocol by a newly created GPIO-interface,
complete systems can be simulated, analyzed and debugged; including the Sifive
HiFivel embedded development board with an OLED shield and buttons.

The third contribution in this area improves the HW/SW co-design introspection
by allowing a unique view on hardware states of a virtual prototype. RISCview of-
fers an easy-to-use visualization of SystemC peripherals with a minimal impact on
the existing code-base through leveraging the Model-View principle. Its HW /SW co-
debugging system is applicable from the earliest stages of the design process and
provides a live view on the internals, intended to be used alongside existing SW
debugging tools like GDB, which was shown in a case-study by finding an intricate
race-condition that could not be found by traditional debugging techniques.
Finally, the fourth contribution closes the TLM/RTL gap by implementing a
HWITL system that is focused on combining transaction- and register transfer layer
models. The proposed tool VPITL leverages the existing RISC-V VP infrastructure
by translating memory-mapped I/O accesses to synthesized RTL peripheral im-
plementations to an FPGA transparently, virtually placing the RTL peripherals
into the VP. The approach enables RTL designers to focus development on their
USP with a minimal design evaluation cost, as the minimally required set of
RISC-V specific HW does not have to be brought up in HDL first. Additionally,
it offers cross level testing possibilities of RTL models against their SystemC
counterparts, and mixed reality system evaluation approaches; thus also improving
the integration test phases of the system design process.

168

CHAPTER 5. CONCLUSION

Verification The first contribution in this field adds a unique verification ap-
proach for early HW TLM models through a framework that enables the symbolic
execution of previously too complex SystemC TLM models. This verification
approach leverages a different scheduling scheme to the SystemC’s user-space
scheduling, which is incompatible with modern C++ symbolic execution tools
like KLee. Instead, it offers a conversion script to generate intermediate models
that instead rely on return-based function scheduling. This scheduling scheme is
implemented in an alternative SystemC kernel, called Peripheral Kernel, PK. The
proposed PK has proven to be very effective in the evaluation by enabling real-
world TLM models to be thoroughly verified with common symbolic execution
engines because of its sleek structure and optimized architecture. In the experi-
mental application of the approach, several known and previously unknown faults
could be located in the RISC-V VP’s implementation of the FE310 PLIC and other
peripherals.

The second contribution extends the previous contribution to the RTL, enabling
early cross-level verification of RTL/TLM peripheral models, and directly test-
bench driven verification on the RTL. It extends the PK to incorporate a more
detailed simulation of signals, slots, and other SystemC RTL principals, while still
using the return-based function scheduling approach. Preliminary experiments
with a HDL PLIC, written in SpinalHDL and converted to SystemC RTL using
Verilator, use a TLM translation bus to interface with the SimpleBus interface of
the SoC MicroRV32.

The third and final contribution in the verification field enables a DIFT-based
security policy evaluation in the early system design stages, allowing for a security-
focused DSE with VPs. The framework was applied to the RISC-V VP with a
minimal impact on the existing code-base, and is intended to be used continuously
from the earliest phases in the design process, starting in the specification phase.
It supports arbitrary security lattice concepts, including the simpler integrity-
and security models, throughout the complete SoC, including DMA and UART
peripherals in different clearance and source level classes. It was used successfully
to analyze different SW images while running on the HW based on the conformity
to example security lattices, as well as to evaluate security concepts and their
implications and restrictions they impose on the system.

All of the mentioned approaches have been implemented, evaluated, thoroughly
discussed and made publicly available (excluding RISCview due to licensing
reasons). In conclusion, these contributions have significantly improved the
complex system design process by offering easy, early and continuous verification
approaches, as well as speeding up the early system design phases with several
modeling techniques.

169

CHAPTER 5. CONCLUSION

Outlook While the proposed approaches have already shown a multitude of
benefits along the system design process, they can also serve as the foundation for
new investigations and extensions besides the discussed fields of future studies
in the individual sections. In particular, there are overlapping and process-wide

ideas that can be worth investigating; and the following directions seem very

promising to further improve the complex system design process in different
stages:

1)

2)

3)

4)

Investigate further techniques on verifying SW on VPs, especially based
on constrained random / concolic testing techniques in a combination of
the RISC-V VP and [32, 33, 199]. Combining this with the proposed DIFT
framework could enable a thorough verification of the software regarding
its conformity to security policies, including the hardening against security
flaws. Especially if a complete path exploration can be achieved, the same
system could be used to both explore and evaluate security policies in the
earliest stages, as well as function as a driver for SW verification in the last
acceptance test phase.

Use the existing techniques for DIFT to analyze different aspects of the
HW/SW data flow. The collected data on variables of interest could be used
for post-mortem analysis tools to track their paths through all relevant parts
of the HW/SW system, enabling a unique look at aspects on which the data
depends on. This also can be used to boost automatic test-case generation
tools such as fuzzers with an in-depth data-flow centric coverage metric,
including, but not limited to, security policies.

For further improvement of the initial design space exploration phase, it
might be worth investigating on how to automatically generate both TLM-
based HW memory maps and their interfacing SW drivers based on the
documentation or specification. This tool could start from just the named
register locations up to an initial state-machine in the HW peripheral that
can be interfaced by the stub SW driver. This approach can speed up the
bring-up time even further besides using the proposed RISC-V VP.

While maintaining a specialized, but compatible SystemC PK has proven a
successful approach in verifying TLM/RTL SystemC peripherals using sym-
bolic execution, it may be worth investigating to get the SystemC kernel out
of the symbolic execution interpreter altogether. With tools like Angr [200],
it may be possible to leverage selective symbolic execution to focus only on
the functional part of a SystemC run-time system. This might speed up the
execution process or enable the verification of the full-system interaction, but
with the remaining challenge of proving that the approach is still functionally
complete.

170

CHAPTER 5. CONCLUSION

5)

6)

Another modeling speedup could be achieved by adding scriptable mock-
up peripherals in the RISC-V VP. These could be interpreted by a Python or
Lua (as in the Environment Model GUI) interpreter and drive an even faster
design space exploration phase and further expand the RISC-V IP ecosystem.

Further adding to the IP ecosystem, it might be worth investigating the use of
machine learning techniques to deduce a peripheral’s behavior model based
on SW accesses. Combining this with proposed symbolic execution methods
as in Section 4.1, program path exploration based on symbolic peripheral
registers in memory-mapped I/O might enable effective reverse-engineering
of underlying hardware models based on given SW executable binaries.

171

CHAPTER 5. CONCLUSION

172

Acronyms

ACM Access Control Model. 144, 147

ADC Analog-to-Digital Converter. 16, 60

AES Advanced Encryption Standard. 118, 162
API Application Programming Interface. 84, 88
ASIC Application-specific Integrated Circuit. 4, 23

AT Approximately Timed. 19, 20
BRAM Block RAM. 107, 112, 113, 182

CAN Controller Area Network. 58, 162, 163

CGF Coverage Guided Fuzzing. 50, 51, 178

CI/CD Continuous Integration / Continuous Deployment. 80, 121

CISC Complex Instruction Set Computer. 5

CLINT Core-Local Interruptor. 24, 28, 31, 32, 48, 51, 56, 75, 78, 110, 114, 168
CLV Cross-Level Verification. 7

CPS Cyber-Physical Systems. 98

CPU Central Processing Unit. 1, 16, 30-32, 34, 35, 38-40, 4547, 53, 59, 60, 63, 82,
83, 85,97,99, 144, 146, 148, 150, 152, 155-157, 160, 162, 163, 166, 180, 185

CS Chip Select. 17, 84, 93, 180

173

Acronyms

CSR Control and Status Register. 16, 21, 22, 30, 31, 35, 36, 38, 40, 41, 47

DAC Digital-to-Analog Converter. 16
DBT Dynamic Binary Translation. 53, 54, 56, 60, 166

DIFT Dynamic Information Flow Tracking. 11, 13,117, 118, 144-146, 149, 150, 152,
154-156, 158, 162, 164-167, 169, 170, 183, 185

DMA Direct Memory Access. 16, 31, 42, 83, 99, 145, 146, 162, 169
DMI Direct Memory Interface. 39, 42

DRAM Dynamic Random Access Memory. 4

DSE Design Space Exploration. 25, 26, 169

DSP Digital Signal Processor. 15

DUT Device under Test. 134, 142, 181

DUV Device under Verification. 116, 123, 124, 126-128, 181

ECU Electronical Control Unit. 1, 162
EDA Electronic Design Automation. 1
ELF Executable and Linking Format. 32, 47, 48, 50, 51

ESL Electronic System Level. 23, 28, 56, 95, 96

FAT File Allocation Table Filesystem. 52
FIFO First-In-First-Out. 103, 104, 121

FPGA Field-Programmable Gate Array. 3, 4, 23-26, 83, 96-101, 103, 105-108, 110-
114, 168, 180

GCC GNU Compiler Collection. 52
GCD Greatest Common Divisor. 106, 107,111, 112, 114, 182
GCOV Gnu Coverage Tool. 30, 32, 38

GDB GNU Project debugger. 28, 30, 4648, 79, 82, 83, 85, 94, 168

174

Acronyms

GPIO General Purpose Input/Output. 16, 17, 24, 48-50, 58, 60-64, 70, 71, 75-78,
86, 88,91, 106, 108-110, 112, 114, 168, 179, 182, 184, 185

GPU Graphics Processing Unit. 1

GUI Graphical User Interface. 24, 25, 48, 50, 58, 59, 61-68, 74-82, 84, 86, 88, 168,
171,179

HAL Hardware Abstraction Layer. 16, 82
HART Hardware Thread. 122, 128, 142, 180
HDL Hardware Description Language. 9, 23, 104, 138, 142, 143, 168, 169

HW hardware. 1-9, 11, 13, 15, 16, 21, 23, 25-28, 33, 34, 55, 56, 58, 70, 79, 81-83,
87, 88,95-98, 105, 107,108, 110-112, 114, 116, 119, 138, 144-146, 148, 149, 152,
155, 156, 158, 165, 168-170, 178, 180, 184, 185

HWITL Hardware-in-the-Loop. 9, 13, 25, 26, 95-99, 107, 113, 114, 168

I*C Inter-Integrated Circuit. 17, 88, 113

IC Integrated Circuit. 1, 36, 81, 167

IDE Integrated Development Environment. 47, 48, 83

IFP Information Flow Policy. 144, 146-150, 158, 162, 163, 181

IoT Internet of Things. 1, 6,7, 23, 27,57

IP Interlectual Property. 5, 7, 25, 56, 60, 82-85, 96, 97, 99, 105, 137, 138, 171
IR Immediate Representation. 124, 127, 140

ISA Instruction Set Architecture. 5, 14, 16, 21-23, 27, 29, 40, 45, 48, 50, 51, 55-58,
142,148, 182

ISP In-System Programmer. 17

ISS Instruction Set Simulator. 5, 23, 24, 27, 95
JIT Just-in-Time Compilation. 53, 56, 166
LC Logic Cell. 107, 112,113, 182

175

Acronyms

LED Light Emitting Diode. 17, 18, 25, 48, 58, 62, 64, 65, 71,72, 74,75, 79, 105, 106,
109, 112, 113, 176, 179, 184

LoC Lines of Code. 52, 164
LT Loosely Timed. 19, 20

LUB Least Upper Bound. 148, 150

MIPS Microprocessor without Interlocked Pipelined Stages. 5
MIPS Million Instructions Per Second. 52-55, 77, 78, 165, 182
MISO Master-In-Slave-Out. 17, 76, 84

MMU Memory Management Unit. 56

MOSFET Metal-Oxide Semiconductor Field-Effect Transistor. 17
MOSI Master-Out-Slave-In. 17, 84

MSB Most Significant Bit. 109

MVP Minimum Viable Product. 3, 114

OLED Organic Light Emitting Diode. 25, 59, 65, 69-71, 75-78, 82, 88, 90, 94, 168,
179, 184

OS Operating System. 3, 16, 19, 38, 51, 54, 56

PCB Printed Circuit Board. 18, 58, 65, 70, 76, 88, 91, 105, 168, 179, 184
PIN Personal Identification Number. 162, 163
PK Peripheral Kernel. 117, 120, 123-128, 137-143, 169, 170, 181

PLIC Platform Level Interrupt Controller. 24, 28, 32, 35, 48, 51, 56, 60, 63, 103, 114,
120, 122, 123, 125, 126, 128-130, 133-135, 137, 142, 168, 169, 182, 183, 185

PNR place & route. 107, 112
POR Partial Order Reduction. 120, 121

PWM Pulse Width Modulation. 17, 18, 60, 64
RAM Random Access Memory. 4, 77,162, 174

176

Acronyms

RGB Red Green Blue. 65, 74,75, 179
RISC Reduced Instruction Set Computer. 5, 16, 21
RSP Remote Serial Protocol. 47

RTL Register Transfer Layer. iii, 2, 9, 13, 19, 20, 23-28, 52, 78, 84, 95-97, 99, 104,
107,111, 113,114,117, 120, 138-140, 142, 143, 146, 168-170, 180-182

RX receive "X’. 93, 180

SDV Software Driven Verification. 7
SMT GSatisfiability Modulo Theories. 129, 130

SoC System-on-Chip. 1, 4, 5, 11, 13, 14, 21, 25, 26, 48, 57, 58, 60, 70, 82, 83, 95, 96,
98,99, 104, 107, 114, 120, 128, 137, 145, 146, 149, 158, 169, 180

SPI Serial Peripheral Interface. 17, 24, 58, 60, 62-66, 68, 70, 72, 74-78, 83, 84, 88,
91-94, 110, 180, 182, 184

SW software. 1-5, 7-9, 11, 13, 15, 16, 21, 23-25, 27, 28, 30-35, 40, 41, 4648, 50, 55,
56, 58, 80-83, 91, 95-98, 105, 107, 110-112, 116, 117, 138, 144-146, 148, 149,
155, 156, 158-160, 163, 165, 166, 168-171, 178, 182, 184, 185

TCP Transmission Control Protocol. 24, 47-49, 58, 62—-64, 80, 81, 84, 86, 178
TIC Translator Interface Controller. 103, 104

TLM Transaction Level Modeling. 2, 9, 11, 13, 14, 19, 24-31, 33, 40, 42, 45-47, 53,
55, 56, 58, 60, 77, 81, 95-97, 99, 101, 102, 114, 117, 119-121, 123-125, 128-130,
133, 135, 137-139, 142, 143, 145, 152, 155, 158, 159, 162, 167-170, 180, 181, 185

TX transmit "X". 92, 93, 158, 180

UART Universal Asynchronous Receiver / Transmitter. 16, 17, 32, 38, 49, 58, 60,
83, 88, 92,99, 103, 104, 109, 110, 112-115, 150, 158, 163, 165, 169, 180

UDP User Datagram Protocol. 52
USP Unique Selling-Point. 25, 96, 97, 105, 114, 168

VP Virtual Prototype. iii, 1, 2, 4, 5, 7-11, 13, 14, 19, 24-30, 32-36, 38, 45-51, 55-63,
70,71,74,75,77-85, 88,90,94-97,99, 100, 103, 106-108, 110, 113, 114, 116-119,
121, 138, 144-146, 149, 152, 155, 157-159, 161, 162, 165-170, 178, 179, 184186

VPIL Virtual Peripheral in-the-Loop. 25, 95, 97, 99, 100, 106, 108, 111, 114, 180

177

List of Figures

1.1

1.2

1.3

1.4

21

2.2

3.1
3.2

3.3

Abstraction levels addressed in this dissertation highlighted in
green. Gajski-Kuhn Y-Model, redrawn, from [9]..

Possible SW/HW layers where a given functionality can be imple-
mented, with the trade-off between flexibility and execution speed.
Traditional SW-then-HW design flow. Notice the possible design
rollback due to the missing design space exploration.

Overview of the proposed design flow for fast and agile develop-

ment of embedded systems. 0000

Behavior model of an embedded device in the scope of this thesis.
It consists of three layers: The software stack (binary running on a
chip, in blue), the on-chip peripherals (hardware functionality, in
green), and off-chip devices that are part of the deployed system

(orange).

Classification of degrees of SystemC timing accuracy [4]. From left

to right the models gain timing accuracy with a decreasing execution

RISC-V VP architecture overview.

Qt-based virtual environment, showing the HiFivel board with a
seven segment display (output) and a button (input), attached to

the VP simulation through a TCP connection.

Overview on the RISC-V Torture and CGF approach for VP testing.

178

15

20

30

49
51

LIST OF FIGURES

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

Main architecture of the virtual environment system. Elements
highlighted in green define the hardware behavior through the
SystemC domain language (simplified for readability). The con-
tents of the VP’s memory define software behavior, highlighted in
blue. On the left side is the VP Environment Model GUI, which
provides the interface to interact with the user. The behavior of
outside components is combined in the environment model with
its configurable set of devices, highlighted in orange.
Example sequence diagram of the GPIO-Protocol. The dashed
line illustrates that the getState () and setPin(...) functions are
continued regularly in the background.
Context menus of the Environment Model GUI. Figure 3.6a demon-
strates a list of devices to be added, and Figure 3.6b shows a settings-
window of a button that offers to bind new keys to the button,
as well as changing the pin-connections and the device-specific
configurationelements.
Available device interfaces for Lua scripts. In the Lua tab, high-
lighted in bold, are the minimum necessary functions for each
interface. Not shown is the Button/Mouse input interface with the
functions onClick(active) and onKeypress(code, active) for
better readability. 0000000
The four layers of scoping for connections from the individual
environment device to the actual register contents of the GPIO
peripheralinthe VP..
Image of the virtual breadboard environment with a button, a red
LED and a seven segment display on the breadboard, and the builtin
RGB-LED on the HiFivel. The connections to the seven segment
display are omitted for readability reasons.
The OLED display shield with an SSD1306 driver and seven but-
tons, running the demos from Section 3.2.6.2 (Fig. 3.10b) and Sec-
tion 3.2.6.1 (Fig. 3.10a), respectively.
Architecture of RISCview (in red) together with a system under
debug (in blue). Highlighted in green are the user-defined parts
that are necessary for the adoption.
Screenshot of the architecture view in RISCview.
Screenshot of the VP simulation with an active OLED Display run-
ning an example program. L.
Glitched display showing only a partial image and distorted lines.
This simulation behaves exactly like the real HiFivel board with the
customPCB. oo

61

63

66

67

71

75

76

82

89

90

LIST OF FIGURES

3.15

3.16

3.17

3.18

3.19

3.20

3.21

4.1

Snapshot of a still command-populated TX queue, although Data/-
Command line just toggled to data mode. Note the populated TX
buffer in the SPI peripheral, where the top left byte is the first to be
transmitted. The first two are still commands: 0x10 for the contrast
value and 0xBO for the charge pump voltage. Following bytes are
all zeroes to clear the screen. Additional status flags indicate that
the RX queue is empty, CS is set to device 02 (551106), and the TX
interrupt is enabled but not pending.
Architecture level overview of the proposed Virtual Peripheral in-
the-Loop approach. On the left side is the TLM virtual prototype
with a memory-mapped bridge (in green) as the initiator. The right
side represents the real hardware with the responder bridge handling
the bus accesses. In blue is plotted a possible data flow path from
the virtual CPU to a real sensor RTL implementation.
Flow diagrams of two requests from the initiator to a responder. All
individual fields are encoded in little endian network order.

The FPGA implementation of the responder bridge. Modules in
blue are for interfaces, models in purple represent internal modules
handling communication between interfaces, and red / orange mod-
ules are for orchestration and control. The response buildup time is
in the proposed implementation always under one millisecond. . .
Annotated image of the experimental breadboard setup. The USB-
connections not shown are connected to the host PC.
Memory map implemented for the case-study. The simulated SoC
is on the left side, while the RTL HW implementations are on the
rightside. o
Read (3.21a) and write (3.21b) transactions with annotated timing
information and decoded serial communication. This is the UART
implementation of the proposed protocol (cf. Figure 3.17), and the
response buildup time, in both cases, is under one millisecond
(greenmarker1).

I/O Ports of the Platform Level Interrupt Controller. Elements
with sharp corners are registers, managed by logic in the main
run() method. The external interrupt pending (hart_eip) registers
are private variables used for suppressing interrupt re-triggers and
exist for every HART. Priority, threshold and the claim/response
registers are duplicated for every interrupt.

180

93

97

100

103

106

107

109

LIST OF FIGURES

4.2

4.3

4.4

4.5

4.6

4.7
4.8

4.9

4.10

Overview of the verification approach using the proposed PK. High-
lighted in green are the user-defined parts, in brown are the pro-
vided elements, and blue are existing tools.
PK architecture overview with different interfaces for connecting to
the (translated) DUV. Shown are the different interfaces of the Sym-

SysC framework connecting to the DUV via the proposed wrappers.

Overview of the verification process flow using the proposed PK.
Highlighted in green are the user-defined parts, in brown are the
provided elements, and blue are existing tools.
The module bring-up phase of the extended PK. Rounded boxes
are classes, while the folded boxes represent macros. The dashed
arrows (as in wake_process(pid, t)) indicate that this opera-
tion occurs only after the bring-up phase, during run-time. Some
functions are omitted for clarity, especially the actual functions of
SC_MODULE. . . o v v oo e
Association of the classes Signal and Port in the PK library. A
connection, made in the bring-up phase, will result in a PortBind
ing. All classes here are templated based on the signal base type

sc_clock update mechanism in the PK library.
The structure of the DUT. TLM transactions are translated by the
Bus Interface to RTL signals for the verilated RVPLIC (yellow).

Three example IFPs. IFP-1 and IFP-2 show a simple policy that
models confidentiality and integrity, respectively. IFP-3 is a natural
combination of IFP-1 and IFP-2, thus modeling confidentiality and
integrity together. oo oo oL
Overview of the RISC-V VP-based approach for early and accurate
validation of security policies.

181

123

128

139

140

141
141

142

147

List of Tables

21

3.1

3.2

3.3

3.4

4.1

4.2

Excerpt of current (as of June 2023) ratified or soon-to-be ratified
extensions of the RISC-V ISA, extended, from [16]. The top lines
are Base instructions where at least one instance needs to be imple-
mented, while the lower ISA definitions are optional Extensions. . .

Experiment results - all execution times reported in seconds, num-
ber of executed instructions (#instr) reported in Billions (B). MIPS
= Millions Instructions Per Second. LoC = Lines of Code in C and
assembly (ASM). M.O. = Memory Out (32GB limit). T.O. = Time
Out (4h = 14400 seconds limit). N.S. = Not Supported.
Performance overhead test results. GPIO register accesses (read-
/write): 3025/946. SPI words transmitted: 58 678 (in connected
tests).
Test results for GCD-implementations gcd(a,b) on SW and a
memory-mapped RTL implementation, both using Euclid’s algo-
rithm. The timings include the startup- and shutdown overhead of
the RISC-VVP.
Synthesis and Place & Route parameters for evaluated designs at-
tached to responder bridge. Each design refers to an evaluated
configuration of peripherals. Measured frequencies and times are
averaged over ten runs with respective standard deviation. Area
and memory utilization are shown as absolute (#) and relative (%)
to their available resources, which were 7680 LCs and 32 BRAM
units, with a target frequency of 12MHz.

Test results for the original PLIC. For a Failed result, the number of
detected failures by that test is given in parentheses.
Classification of the faults injected or found in the PLIC.

182

22

54

78

111

112

LIST OF TABLES

4.3 Overview on how fast the errors in the original PLIC (F1 to F6) and
the PLIC with injected faults (IF1 to IF6) have been found by the
respective tests. The runtime is given in minutes (except for IF3,
given in hours) and rounded to the next highest integer. 135
4.4 Simple sensor fault categories and number of individual occurrences.
}indicates a previously unknown fault. Complete path exploration
time: 4.465s. 137
45 Modified Wilandar-Kamkar buffer overflow test-suite results. . . . 164
4.6 Results on the performance overhead of the proposed DIFT approach.165

183

Listings

3.1

32
3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11
3.12

3.13

Example application running on the VP to demonstrate the HW /SW
interaction.o oo oo
Bare-metal bootstrap code demonstrating interrupt handling
System call handling stub linked with the C library (guest side,
executed on the VP host system). This example listing is based on
the RISC-V newlib port available at https://github.com/riscv/r
iscv-mewlib..o oo oo o
Concept on system call execution on the RISC-V VP, either redirect
to the host system or take trap.

34
35

36

37

Bare-metal bootstrap code for a multi-core simulation with two cores. 41

Core memory interface with atomic operation support.
SystemC-based configurable sensor model that is periodically filled
with random data - demonstrates the basic principles on modeling
peripherals. oo
Mechanism for unique global C-functions that are inserted into the
Lua-script’s metatable m_env as prefix-less references.
Excerpt of an example configuration file for a PCB with an OLED
display, used in Figure 3.10b.
Simple one-pixel LED model withLua
Simple SPI OLED driver model withLua
Example view building pins and attributes of a general purpose I/O
(GPIO) hardware module (cf. the resulting symbol in Figure 3.12).
This C++ description is translated into Tcl/Tk commands that are
then streamed to therenderer.
Trivial class structure of a default view. Trailing slashes are omitted
forreadability. o L

184

43

44

69

70

72
73

86

87

https://github.com/riscv/riscv-newlib
https://github.com/riscv/riscv-newlib

LISTINGS

3.14

3.15
3.16
3.17
3.18

3.19

3.20

3.21

3.22

4.1

4.2
4.3

4.4

4.5
4.6

4.7
4.8

49

4.10

Excerpt of an initialization list of HW-modules and their views.
RV_DEF_AND_ADD() is a compiler macro that instantiates and reg-

isters a view, naming it with the suffix _v. 87
Code to generate a view for the SS51106 Controller (cf. Figure 3.12). 90
Part of the original SS1306 display software driver. 91
Fixed part of the softwaredriver. 93
Exerpt of the protocol data types. This is used by the initiator and

the mock-up responder host programs. 101
The simplified transport function of a virtual bus member using the

initiator bridge. Read and write accesses are mapped through the
TLM-agnostic bus_bridge. 102
SpinalHDL digest of top level peripheral bridge. Digest shows how
new peripherals can be easily added to the bus infrastructure. . . . 105
Simplified implementation of the GPIO bank interaction
demonstration running on the VP. The GPIO banks are memory-
mapped and behave the same as if they were implemented on the

2 108
SW and memory-mapped HW implementation of the gcd(a,b)
algorithm. oo 111

Original SystemC run process of the PLIC from the open source
RISC-V VP. The e_run eventis used for synchronization with a new
incoming interrupt. The function on Line 6 implements the priority

calculation. L 125
Translated SystemC run process of the PLIC. 126
Part of the interrupt priority test (T2). This test contains multiple

logic checks in the form of assertions. 131
Interrupt target used in the tests T1-T3. The target itself contains a

number of assertions already., 132
Part of the simple sensor test-bench. 136

The two functions necessary to model a security flow policy: The
combination operator and the relation operator. 151
Code excerpts of custom Taint data type using overloaded operators.153
Implementation of a sensor peripheral using SystemC TLM and the
proposed DIFT approach. 154
The part of the VP CPU instruction set simulator handling branch-
ing instructions. Animplicit demotion is attempted in the arithmetic
functions of the tainted registers. 157
Example SW to illustrate the approach for checking security policies
by introduction, propagation and checking of tags. 159

185

LISTINGS

411 The part of the VP tainting mechanism handling the merging of
variables, two arithmetic operators and the implicit demotion to the
underlying type. o L oo 161

186

Bibliography

B. Menhorn and F. Slomka, “Confirming the design gap,” in Advances in
Computational Science, Engineering and Information Technology, D. Nagamalai,
A. Kumar, and A. Annamalai, Eds., Heidelberg: Springer International
Publishing, 2013, pp. 281-292, 1sBn: 978-3-319-00951-3.

Semiconductor Industry Association. “2008 international technology
roadmap for semiconductors (ITRS).” (2008), [Online|. Available: https:
//cseweb.ucsd.edu/classes/wi09/cse242a/itrs/0RTC. pdf (visited
on 2022-11).

J. Henkel, “Embedded computing - closing the SoC design gap,” Computer,
vol. 36, no. 9, pp. 119-121, 2003-09. por: 10.1109/mc.2003.1231200.

IEEE standard for standard systemc language reference manual, 2012, pp. 1-638.
por: 10.1109/IEEESTD.2012.6134619.

Osci tIm-2.0 language reference manual, OSCI, 2009.

E. Sotiriou-Xanthopoulos, S. Xydis, K. Siozios, G. Economakos, and D.
Soudris, “Rapid prototyping and design space exploration methodologies
for many-accelerator systems,” in 2015 25th International Conference on Field
Programmable Logic and Applications (FPL), 2015, pp. 1-2. por: 10.1109/FPL.
2015.7293990.

D. Grofle and R. Drechsler, System-Level Verification. Springer Netherlands,
2010, 1sBN: 978-90-481-3631-5. por: 10 . 1007 /978 -90-481-3631-5 3.
[Online]. Available: https://doi.org/10.1007/978-90-481-3631-5_3.

R. Leupers et al., “Virtual platforms: Breaking new grounds,” in 2012
Design, Automation and Test in Europe Conference and Exhibition (DATE), 2012,
pp. 685-690. por: 10.1109/DATE. 20126176558,

O. Hagenbruch, Taschenbuch Mikroprozessortechnik. Hanser Verlag, 2004,
1sBN: 978-3446220720.

187

https://cseweb.ucsd.edu/classes/wi09/cse242a/itrs/ORTC.pdf
https://cseweb.ucsd.edu/classes/wi09/cse242a/itrs/ORTC.pdf
https://doi.org/10.1109/mc.2003.1231200
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/FPL.2015.7293990
https://doi.org/10.1109/FPL.2015.7293990
https://doi.org/10.1007/978-90-481-3631-5_3
https://doi.org/10.1007/978-90-481-3631-5_3
https://doi.org/10.1109/DATE.2012.6176558

BIBLIOGRAPHY

[10]

[11]

[12]

[16]
[17]

[18]

[19]

[20]

[21]

F. Vahid, “What is hardware/software partitioning?” SIGDA Newsl., vol. 39,
no. 6, p. 1, 2009, 1ssn: 0163-5743. por: 10.1145/1862900.1862901. [Online].
Available: https://doi.org/10.1145/1862900.1862901.

Mirabilis Design Inc. “Hardware-software partitioning in system-on-chip
(soc).” (2022), [Online]. Available: https://www.mirabilisdesign.com/
hardware-software-partitioning-in-system-on-chip-soc/ (visited

on 2022-11).

E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting the
risc vs. cisc debate on contemporary arm and x86 architectures,” in 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), 2013, pp. 1-12. por: 10.1109/HPCA.2013.6522302.

S. B. Furber, ARM system-on-chip architecture. Pearson Education, 2000, 1sBN:
978-0201675191.

U. Degenbaev, Formal specification of the x86 instruction set architecture,
Formelle spezifizierung von dem x86-befehlssatz, 2012. por: http://dx . doi.
org/10.22028/D291-26338.

C. Domas, “Breaking the x86 isa,” Black Hat, 2017. [Online]. Available:
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas -
Breaking-The-x86-ISA.pdf.

A. Waterman and K. Asanovié, The RISC-V Instruction Set Manual; Volume
I: User-Level ISA, RISC-V Foundation, December 2019.

A. Waterman and K. Asanovié, The RISC-V Instruction Set Manual; Volume
II: Privileged Architecture, RISC-V Foundation, December 2019.

“RISC-V calling convention.” (2018), [Online]. Available: https://riscv.
org/wp-content /uploads/2015/01/riscv-calling.pdf (visited on
2018-05).

“Alibaba cloud unveils chip development platform to support developers
with risc-v based high-performance socs.” (2022), [Online]. Available:
https://www.alibabacloud.com/de/press-room/alibaba-unveils-
risc-v-chip-development-platform (visited on 2022-08).

“Die risc-v-basierten ssd-controller kommen.” (2020), [Online]. Available:
https://www.golem.de/news/seagate-und-western-digital-die-
risc-v-basierten- ssd- controller - kommen - 2012 - 152690 . html

(visited on 2022-08).

R. Leupers et al., “Virtual platforms: Breaking new grounds,” in 2012
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012,
pp. 685-690. por: 10.1109/DATE. 20126176558,

188

https://doi.org/10.1145/1862900.1862901
https://doi.org/10.1145/1862900.1862901
https://www.mirabilisdesign.com/hardware-software-partitioning-in-system-on-chip-soc/
https://www.mirabilisdesign.com/hardware-software-partitioning-in-system-on-chip-soc/
https://doi.org/10.1109/HPCA.2013.6522302
https://doi.org/http://dx.doi.org/10.22028/D291-26338
https://doi.org/http://dx.doi.org/10.22028/D291-26338
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-ISA.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-ISA.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
https://www.alibabacloud.com/de/press-room/alibaba-unveils-risc-v-chip-development-platform
https://www.alibabacloud.com/de/press-room/alibaba-unveils-risc-v-chip-development-platform
https://www.golem.de/news/seagate-und-western-digital-die-risc-v-basierten-ssd-controller-kommen-2012-152690.html
https://www.golem.de/news/seagate-und-western-digital-die-risc-v-basierten-ssd-controller-kommen-2012-152690.html
https://doi.org/10.1109/DATE.2012.6176558

BIBLIOGRAPHY

[22]

[23]

[24]

[27]

[28]

[29]

[30]

L. Bossuet and G. Gogniat, “Chapter 5: Hardware security in embed-
ded systems,” Communicating Embedded Systems, 2010-01. por: 10 . 1002 /
9781118557624 . chb.

D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,” in 2015 13th Annual Conference on
Privacy, Security and Trust (PST), 2015, pp. 145-152. por: 10 . 1109 /PST .
2015.7232966.

HiPEAC. “New startup machineware enables ultra-fast risc-v simulation.”
(2022), [Online]. Available: https://www.hipeac.net/news/6996/new-
startup-machineware - enables-ultra-fast-risc-v-simulation/
(visited on 2022-11).

Jo Vanwell. “10 iot security incidents that make you feel less secure.” (2021),
[Online]. Available: https://conosco.com/industry-insights/blog/
iot-security-breaches-4-real-world-examples (visited on 2022-11).

CisoMag Authors. “10 iot security incidents that make you feel less se-
cure.” (2020), [Online]. Available: https : / / embeddedartistry . com/
fieldatlas/historical -software-accidents-and-errors/ (visited
on 2022-11).

Semiconductor Industry Association. “2015 international technology
roadmap for semiconductors (ITRS).” (2015), [Online|. Available: https:
//www . semiconductors . org/wp-content/uploads/2018/06/0_2015-
ITRS-2.0-Executive-Report-1.pdf (visited on 2022-11).

Y. Xu et al., “Towards developing high performance risc-v processors us-
ing agile methodology,” 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1178-1199, 2022.

S. D. Anthony. “3 ways to fail cheap.” (2009), [Online]. Available: https:
//hbr . org/2009/03/why-focusing-on-innovation-suc (visited on
2022-11).

V. Herdt and R. Drechsler, “Advanced virtual prototyping for cyber-
physical systems using risc-v: Implementation, verification and chal-
lenges,” Science China Information Sciences, vol. 65, 2022-01. por: 10 . 1007/
s11432-020-3308-4.

N. Bruns, V. Herdt, D. Grofle, and R. Drechsler, “Efficient cross-level
processor verification using coverage-guided fuzzing,” in Proceedings of the
Great Lakes Symposium on VLSI 2022, ser. GLSVLSI 22, Irvine, CA, USA: As-
sociation for Computing Machinery, 2022, pp. 97-103, 1sBN: 9781450393225.
por: 10.1145/3526241.3530340. [Online]. Available: https://doi.org/
10.1145/3526241 .3530340.

189

https://doi.org/10.1002/9781118557624.ch5
https://doi.org/10.1002/9781118557624.ch5
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://www.hipeac.net/news/6996/new-startup-machineware-enables-ultra-fast-risc-v-simulation/
https://www.hipeac.net/news/6996/new-startup-machineware-enables-ultra-fast-risc-v-simulation/
https://conosco.com/industry-insights/blog/iot-security-breaches-4-real-world-examples
https://conosco.com/industry-insights/blog/iot-security-breaches-4-real-world-examples
https://embeddedartistry.com/fieldatlas/historical-software-accidents-and-errors/
https://embeddedartistry.com/fieldatlas/historical-software-accidents-and-errors/
https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
https://hbr.org/2009/03/why-focusing-on-innovation-suc
https://hbr.org/2009/03/why-focusing-on-innovation-suc
https://doi.org/10.1007/s11432-020-3308-4
https://doi.org/10.1007/s11432-020-3308-4
https://doi.org/10.1145/3526241.3530340
https://doi.org/10.1145/3526241.3530340
https://doi.org/10.1145/3526241.3530340

BIBLIOGRAPHY

[32]

[33]

[36]

[37]

[39]

S. Tempel, V. Herdt, and R. Drechsler, “An effective methodology for
integrating concolic testing with systemc-based virtual prototypes,” in
2021 Design, Automation and Test in Europe Conference and Exhibition (DATE),
2021, pp. 218-221. por: 10.23919/DATE51398.2021.9474149.

S. Tempel, V. Herdt, and R. Drechsler, “SISL: Concolic testing of structured
binary input formats via partial specification,” in Automated Technology for
Verification and Analysis, A. Bouajjani, L. Holik, and Z. Wu, Eds., Cham:
Springer International Publishing, 2022, pp. 77-82, 1sBN: 978-3-031-19992-
9.

J. Zielasko, S. Tempel, V. Herdt, and R. Drechsler, “3D visualization of
symbolic execution traces,” in Forum on Specification and Design Languages,
2022, pp. 1-8. por: 10.1109/FDL56239.2022.9925664.

V. Herdt, D. Grofie, S. Tempel, and R. Drechsler, “Adaptive simulation with
virtual prototypes in an open-source risc-v evaluation platform,” Journal of
Systems Architecture, vol. 116, p. 102135, 2021, 1ssn: 1383-7621. por: https://
doi.org/10.1016/j.sysarc.2021.102135. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1383762121001016.

V. Herdt, D. Grofse, J]. Wloka, T. Giineysu, and R. Drechsler, “Verification
of embedded binaries using coverage-guided fuzzing with systemc-based
virtual prototypes,” in Proceedings of the 2020 on Great Lakes Symposium on
VLSI, ser. GLSVLSI "20, Virtual Event, China: Association for Computing
Machinery, 2020, pp. 101-106, 1sBN: 9781450379441. por: 10.1145/3386263.
3406899. [Online]. Available: https : //doi . org/ 10 . 1145 /3386263 .
3406899.

N. Bruns, V. Herdt, and R. Drechsler, “Unified HW/SW coverage: A
novel metric to boost coverage-guided fuzzing for virtual prototype based
HW/SW co-verification,” in Forum on Specification and Design Languages,
FDL 2022, Linz, Austria, September 14-16, 2022, IEEE, 2022, pp. 1-8. por: 10.
1109/FDL56239.2022.9925661. [Online]. Available: https://doi.org/
10.1109/FDL56239.2022.9925661.

V. Herdt, D. Grofie, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,”
Journal of Systems Architecture, vol. 109, p. 101 756, 2020, 1ssN: 1383-7621. por:
https://doi.org/10.1016/j.sysarc.2020.101756.

P. Pieper, V. Herdt, and R. Drechsler, “Advanced environment modeling
and interaction in an open source RISC-V virtual prototype,” in Proceed-
ings of the Great Lakes Symposium on VLSI 2022, ser. GLSVLSI "22, Irvine,
CA, USA: Association for Computing Machinery, 2022, pp. 193-197, 1sBN:
9781450393225. por: 10.1145/3526241.3530374.

190

https://doi.org/10.23919/DATE51398.2021.9474149
https://doi.org/10.1109/FDL56239.2022.9925664
https://doi.org/https://doi.org/10.1016/j.sysarc.2021.102135
https://doi.org/https://doi.org/10.1016/j.sysarc.2021.102135
https://www.sciencedirect.com/science/article/pii/S1383762121001016
https://www.sciencedirect.com/science/article/pii/S1383762121001016
https://doi.org/10.1145/3386263.3406899
https://doi.org/10.1145/3386263.3406899
https://doi.org/10.1145/3386263.3406899
https://doi.org/10.1145/3386263.3406899
https://doi.org/10.1109/FDL56239.2022.9925661
https://doi.org/10.1109/FDL56239.2022.9925661
https://doi.org/10.1109/FDL56239.2022.9925661
https://doi.org/10.1109/FDL56239.2022.9925661
https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1145/3526241.3530374

BIBLIOGRAPHY

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

P. Pieper, V. Herdt, and R. Drechsler, “Advanced embedded system mod-
eling and simulation in an open source RISC-V virtual prototype,” Journal
of Low Power Electronics and Applications, vol. 12, no. 4, 2022, 1ssn: 2079-9268.
por: 10 .3390/ jlpeal2040052. [Online]. Available: https: //www . mdpi .
com/2079-9268/12/4/52.

F. Boseler, J. Walter, and B. R. Perjikolaei, “A comparison of Virtual Platform
Simulation Solutions for timing prediction of small RISC-V based SoCs,”
in Forum on Specification and Design Languages, 2022, pp. 1-8. por: 10.1109/
FDL56239.2022.9925667.

M. Koenig and R. Rasch, “Digital teaching an embedded systems course
by using simulators,” in 2021 ACM/IEEE Workshop on Computer Architecture
Education (WCAE), 2021, pp. 1-7. por: 10.1109/WCAE53984.2021.9707146.

L. Christensen. “Chip Industry’s Technical Paper Roundup: Oct 18.” (2022),
[Online]. Available: https : //semiengineering . com/ semiconductor -
industrys-technical-paper-roundup-oct-18 (visited on 2022-12-20).

P. Pieper, R. Wimmer, G. Angst, and R. Drechsler, “Minimally invasive
HW/SW co-debug live visualization on architecture level,” in Proceedings
of the 2021 on Great Lakes Symposium on VLSI, ser. GLSVLSI "21, Virtual
Event, USA: Association for Computing Machinery, 2021, pp. 321-326, 1sBN:
9781450383936. por: 10.1145/3453688.3461524.

P. Pieper, V. Herdt, D. Grofie, and R. Drechsler, “Dynamic Information Flow
Tracking for Embedded Binaries using SystemC-based Virtual Prototypes,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1-6.
por: 10.1109/DAC18072.2020.9218494.

P. Pieper, V. Herdt, and R. Drechsler, “Veritying SystemC TLM peripherals
using modern C+4 symbolic execution tools,” in 2022 59th ACM/IEEE
Design Automation Conference (DAC), 2022, pp. 1-6. por: 10.1145/3489517 .
3530604.

P. Pieper. “Symbolic SystemC kernel framework.” (2022), [Online]. Avail-
able: https : //github . com/agra-uni-bremen /symsysc (visited on
2022-12-20).

P. Pieper. “Virtual breadboard GUL” (2022), [Online]. Available: https :
//github.com/agra-uni-bremen/virtual-breadboard (visited on 2022-
12-20).

P. Pieper, V. Herdt, S. Tempel, K. A. Rudkowski, S. Ahmadi-Pour, and N.
Bruns. “RISC-V virtual prototype.” (2021), [Online]. Available: https://
github.com/agra-uni-bremen/riscv-vp (visited on 2022-12-20).

P. Pieper. “Dynamic information flow analysis with the RISC-V VP.” (2022),
[Online]. Available: https://github.com/agra-uni-bremen/riscv-dfa
(visited on 2022-12-20).

191

https://doi.org/10.3390/jlpea12040052
https://www.mdpi.com/2079-9268/12/4/52
https://www.mdpi.com/2079-9268/12/4/52
https://doi.org/10.1109/FDL56239.2022.9925667
https://doi.org/10.1109/FDL56239.2022.9925667
https://doi.org/10.1109/WCAE53984.2021.9707146
https://semiengineering.com/semiconductor-industrys-technical-paper-roundup-oct-18
https://semiengineering.com/semiconductor-industrys-technical-paper-roundup-oct-18
https://doi.org/10.1145/3453688.3461524
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1145/3489517.3530604
https://doi.org/10.1145/3489517.3530604
https://github.com/agra-uni-bremen/symsysc
https://github.com/agra-uni-bremen/virtual-breadboard
https://github.com/agra-uni-bremen/virtual-breadboard
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/agra-uni-bremen/riscv-dfa

BIBLIOGRAPHY

[51]

[52]

[60]

[61]

[62]

P. Pieper. “Virtual peripheral in-the-loop: Protocol.” (2023), [Online].
Available: https : / / github . com / agra - uni - bremen / virtual - bus
(visited on 2023-03-24).

P. Pieper, S. Ahmadi-Pour, and R. Drechsler, “Virtual-peripheral-in-the-
loop: A hardware-in-the-loop strategy to bridge the VP/RTL design-gap,”
in Proceedings of the International Conference on Hardware/Software Codesign
and System Synthesis, ser. CODES+ISSS "23, Hamburg, Germany: Associa-
tion for Computing Machinery, 2023. por: 10.1145/-pending-.

M. Barr. “Embedded systems glossary.” (), [Online]. Available: https://
barrgroup.com/embedded-systems/glossary (visited on 2022-12-20).

M. Jimnez, R. Palomera, and 1. Couvertier, Introduction to Embedded Systems:
Using Microcontrollers and the MSP430. Springer Publishing Company, In-
corporated, 2017, 1sBN: 1493944282.

F. Kesel, Modellierung von digitalen Systemen mit SystemC, Von der RTL- zur
Transaction-Level-Modellierung. Miinchen: Oldenbourg Wissenschaftsver-
lag, 2012, 1sBN: 9783486718959. por: doi:10.1524/9783486718959.

T. De Schutter, Better Software. Faster!: Best Practices in Virtual Prototyping.
Synopsys Press, 2014.

D. Grofie and R. Drechsler, Quality-Driven SystemC Design. Springer, 2010.

S. Swan, “SystemC transaction level models and RTL verification,” in 43
ACM/IEEE Design Automation Conference, 2006, pp. 90-92. por: 10 . 1145/
1146909.1146937.

M. Goli and R. Drechsler, “Scalable simulation-based wverification of
SystemC-based virtual prototypes,” in Euromicro Conf. on Digital System
Design (DSD), IEEE, 2019, pp. 522-529. por: 10.1109/DSD.2019.00081.

“Accellera SystemC distributions.” (2018), [Online]. Available: https://
www . accellera . org/downloads/standards/systemc (visited on 2023-
04).

L. Steiner, M. Jung, F. S. Prado, K. Bykov, and N. Wehn, “DRAMSys4.0: A
fast and cycle-accurate SystemC/TLM-Based DRAM simulator,” Springer,
2020, pp. 110-126.

Y. Liu, K. Ye, and C.-Z. Xu, “Performance evaluation of various risc proces-
sor systems: A case study on arm, mips and risc-v,” in Cloud Computing —
CLOUD 2021, K. Ye and L.-]. Zhang, Eds., Springer International Publish-
ing, 2022, pp. 61-74, 1sBN: 978-3-030-96326-2.

N. Wu, T. Jiang, L. Zhang, F. Zhou, and F. Ge, “A reconfigurable convo-
lutional neural network-accelerated coprocessor based on risc-v instruc-
tion set,” Electronics, vol. 9, no. 6, 2020, 1ssn: 2079-9292. por: 10 . 3390 /

192

https://github.com/agra-uni-bremen/virtual-bus
https://doi.org/10.1145/-pending-
https://barrgroup.com/embedded-systems/glossary
https://barrgroup.com/embedded-systems/glossary
https://doi.org/doi:10.1524/9783486718959
https://doi.org/10.1145/1146909.1146937
https://doi.org/10.1145/1146909.1146937
https://doi.org/10.1109/DSD.2019.00081
https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc
https://doi.org/10.3390/electronics9061005
https://doi.org/10.3390/electronics9061005

BIBLIOGRAPHY

[64]
[65]
[66]

[67]

electronics9061005. [Online]. Available: https://www.mdpi.com/2079-
9292/9/6/10065.

“RISCV-QEMU.” (2018), [Online]. Available: https : / / github . com /
riscv/riscv-gemu (visited on 2022-04).

“Spike.” (2018), [Online]. Available: https://github.com/riscv/riscv-
isa-sim (visited on 2022-04).

B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription
for Electronic System Level Methodology. Morgan Kaufmann/Elsevier, 2007.

C. Celio, D. A. Patterson, and K. Asanovi¢, “The berkeley out-of-order
machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2015-167, 2015. [Online]. Available: http: //wuw2.
eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167 .html.

“FreeRTOS.” (2022), [Online]. Available: https : //www . freertos . org/
(visited on 2022-04).

“Zephyr Project” (2022), [Online]. Available: https : / / www
zephyrproject.org/ (visited on 2022-04).

“RIOT OS.” (2022), [Online]. Available: https : //www . riot - os . org/
(visited on 2022-04).

Concept Engineering GmbH, Nlview 7.3.11, https:/ /www.concept.de, 2021-
04.

V. Herdt, D. Grofie, H. M. Le, and R. Drechsler, “Extensible and config-
urable RISC-V based virtual prototype,” in Forum on Specification and Design
Languages, 2018, pp. 5-16.

R. Leupers et al., “Virtual platforms: Breaking new grounds,” in DATE,
2012, pp. 685-690.

D. GrofSe and R. Drechsler, Quality-Driven SystemC Design. Springer, 2010.

M. Streubiihr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich, “ESL
power and performance estimation for heterogeneous mpsocs using Sys-
temC,” in FDL, 2011, pp. 1-8.

K. Griittner et al., “CONTREX: Design of embedded mixed-criticality CON-
TRol systems under consideration of extra-functional properties,” Micropro-
cessors and Microsystems, vol. 51, pp. 39 =55, 2017.

G. Onnebrink, R. Leupers, G. Ascheid, and S. Schiirmans, “Black box
ESL power estimation for loosely-timed TLM models,” in SAMOS, 2016,
pp- 366-371. por: 10. 1109/SAM0S.2016.7818374.

193

https://doi.org/10.3390/electronics9061005
https://doi.org/10.3390/electronics9061005
https://www.mdpi.com/2079-9292/9/6/1005
https://www.mdpi.com/2079-9292/9/6/1005
https://github.com/riscv/riscv-qemu
https://github.com/riscv/riscv-qemu
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://www.freertos.org/
https://www.zephyrproject.org/
https://www.zephyrproject.org/
https://www.riot-os.org/
https://doi.org/10.1109/SAMOS.2016.7818374

BIBLIOGRAPHY

[78]

[88]

[89]

[90]

V. Herdt, H. M. Le, D. Grofse, and R. Drechsler, “On the application of
formal fault localization to automated RTL-to-TLM fault correspondence
analysis for fast and accurate VP-based error effect simulation - a case
study,” in FDL, 2016, pp. 1-8.

V. Herdt, H. M. Le, D. GrofSe, and R. Drechsler, “Towards early validation
of firmware-based power management using virtual prototypes: A con-
strained random approach,” in FDL, 2017, pp. 1-8.

“RV8.” (2018), [Online]. Available: https://rv8.1io (visited on 2022-04).

“DBT-RISE.” (2021), [Online]. Available: https://github.com/Minres/
DBT-RISE-Core (visited on 2022-04).

N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News,
vol. 39, no. 2, pp. 1-7, 2011-08, 1ssn: 0163-5964. por: 10 . 1145 /2024716 .
2024718. [Online]. Available: http://doi .acm.org/10.1145/2024716 .
2024718.

“Renode.” (2022), [Online]. Available: https://renode.io/ (visited on
2022-04).

“Forvis: A formal RISC-V ISA specification.” (2020), [Online]. Available:
https://github.com/rsnikhil/RISCV-ISA-Spec (visited on 2022-04).

“GRIFT - galois RISC-V ISA formal tools.” (2020), [Online]. Available:
https://github.com/GaloisInc/grift (visited on 2022-04).

“Riscv sail model.” (2020), [Online]. Available: https : //github . com/
rems-project/sail-riscv (visited on 2022-04).

T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic, “Socrocket -
A virtual platform for the European Space Agency’s SoC development,” in
ReCoSoC, 2014, pp. 1-7.

“GCC, the GNU compiler collection.” (1987), [Online]. Available: https :
//gcc.gnu.org/ (visited on 2023-04).

S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “The microrv32 framework:
An accessible and configurable open source risc-v cross-level platform for
education and research,” Journal of Systems Architecture, vol. 133, p. 102757,
2022, 1ssN: 1383-7621. por: https://doi.org/10.1016/j.sysarc.2022.
102757. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1383762122002429.

S. Tempel, V. Herdt, and R. Drechsler, “Symex-vp: An open source virtual
prototype for os-agnostic concolic testing of iot firmware,” Journal of Systems
Architecture, vol. 126, p. 102456, 2022, 1ssn: 1383-7621. por: https://doi.
org/10.1016/j.sysarc.2022.102456. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1383762122000480.

194

https://rv8.io
https://github.com/Minres/DBT-RISE-Core
https://github.com/Minres/DBT-RISE-Core
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://renode.io/
https://github.com/rsnikhil/RISCV-ISA-Spec
https://github.com/GaloisInc/grift
https://github.com/rems-project/sail-riscv
https://github.com/rems-project/sail-riscv
https://gcc.gnu.org/
https://gcc.gnu.org/
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102757
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102757
https://www.sciencedirect.com/science/article/pii/S1383762122002429
https://www.sciencedirect.com/science/article/pii/S1383762122002429
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102456
https://www.sciencedirect.com/science/article/pii/S1383762122000480
https://www.sciencedirect.com/science/article/pii/S1383762122000480

BIBLIOGRAPHY

[91]

[92]

[93]

[101]
[102]

[103]

[104]

“HiFivel.” (2022), [Online]. Available: https : / / www . sifive . com /
boards/hifivel (visited on 2022-04).

“SiFive FE310-G000 manual.” (2020), [Online]. Available: https : / /
sifive . cdn . prismic . io/sifive % 2F500a69f8 - af3a - 4£fd9 - 927f -
10ca77077532_£e310-g000.pdf (visited on 2020-09-17).

“Sifive fe310-g002 datasheet v1p2.” (), [Online]. Available: https : / /
starfivetech.com/uploads/fe310-g002-datasheet-vip2.pdf.

“RISC-V ISA tests.” (2020), [Online]. Available: https : //github . com/
riscv/riscv-tests (visited on 2022-04).

“RISC-V torture test generator.” (2022), [Online]. Available: https : / /
github.com/ucb-bar/riscv-torture (visited on 2022-04).

V. Herdt, D. Grofle, H. M. Le, and R. Drechsler, “Verifying instruction set
simulators using coverage-guided fuzzing,” in Design, Automation and Test
in Europe, 2019.

V. Herdt, H. M. Le, D. Grofie, and R. Drechsler, “Verifying SystemC us-
ing intermediate verification language and stateful symbolic simulation,”
TCAD, 2018, 1ssn: 0278-0070. por: 10.1109/TCAD.2018.2846638.

A. Cimatti, I. Narasamdya, and M. Roveri, “Software model checking
SystemC,” TCAD, vol. 32, no. 5, pp. 774-787, 2013.

M. Y. Vardi, “Formal techniques for SystemC verification,” in DAC, 2007,
pp- 188-192.

M. F. Oliveira et al.,, “The system verification methodology for ad-
vanced tlm verification,” in Proceedings of the Eighth IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Codesign and System Synthesis,
ser. CODES+ISSS "12, Tampere, Finland: Association for Computing Ma-
chinery, 2012, pp. 313-322, 1sBN: 9781450314268. por: 10 . 1145 /2380445 .
2380497. [Online]. Available: https : //doi . org/ 10 . 1145 /2380445 .
2380497.

J. Yuan, C. Pixley, and A. Aziz, Constraint-based Verification. Springer, 2006.

X. Guo and R. D. Mullins, “Accelerate cycle-level full-system simu-
lation of multi-core RISC-V systems with binary translation,” CoRR,
vol. abs/2005.11357, 2020. [Online]. Available: https://arxiv.org/abs/
2005.11357.

X. Guo and R. D. Mullins, “Fast tlb simulation for risc-v systems,” ArXiv,
vol. abs/1905.06825, 2019.

“GEMS5.” (2021), [Online]. Available: https://gem5.googlesource. com/
public/gemb (visited on 2022-04).

195

https://www.sifive.com/boards/hifive1
https://www.sifive.com/boards/hifive1
https://sifive.cdn.prismic.io/sifive%2F500a69f8-af3a-4fd9-927f-10ca77077532_fe310-g000.pdf
https://sifive.cdn.prismic.io/sifive%2F500a69f8-af3a-4fd9-927f-10ca77077532_fe310-g000.pdf
https://sifive.cdn.prismic.io/sifive%2F500a69f8-af3a-4fd9-927f-10ca77077532_fe310-g000.pdf
https://starfivetech.com/uploads/fe310-g002-datasheet-v1p2.pdf
https://starfivetech.com/uploads/fe310-g002-datasheet-v1p2.pdf
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture
https://doi.org/10.1109/TCAD.2018.2846638
https://doi.org/10.1145/2380445.2380497
https://doi.org/10.1145/2380445.2380497
https://doi.org/10.1145/2380445.2380497
https://doi.org/10.1145/2380445.2380497
https://arxiv.org/abs/2005.11357
https://arxiv.org/abs/2005.11357
https://gem5.googlesource.com/public/gem5
https://gem5.googlesource.com/public/gem5

BIBLIOGRAPHY

[105]

[106]

[107]
[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

“ETISS (extendable translating instruction set simulator).” (2022), [On-
line]. Available: https://github.com/tum-ei-eda/etiss (visited on
2022-04).

D. Mueller-Gritschneder, M. Dittrich, M. Greim, K. Devarajegowda, W.
Ecker, and U. Schlichtmann, “The extendable translating instruction set
simulator (ETISS) interlinked with an MDA framework for fast RISC
prototyping,” in 2017 International Symposium on Rapid System Prototyping
(RSP), 2017, pp. 79-84.

“RISC-V-TLM.” (2022), [Online]. Available: https : / / github . com /
mariusmm/RISC-V-TLM (visited on 2022-04).

“HIFIVE1-VP” (2022), [Online]. Available: https://git .minres . com/
VP/HIFIVE1-VP (visited on 2022-04).

“Synopsis virtualizer.” (2021), [Online]. Available: https : / / wuw .
synopsys . com/ verification/virtual - prototyping/ virtualizer .
html (visited on 2022-04).

“SimAvr RISC-V isa simulator.” (2020), [Online]. Available: https : / /
github.com/buserror/simavr (visited on 2022-04).

“PICsimLab - programmable ic simulator laboratory.” (2020), [Online].
Available: https://github.com/lcgamboa/picsimlab (visited on 2022-
04).

“Data-sheet of the SH1106 OLED display driver.” (2019), [Online]. Avail-

able: https://www.velleman.eu/downloads/29/infosheets/sh1106 _
datasheet.pdf (visited on 2023-04).

M. Holzer, B. Knerr, P. Belanovi¢, M. Rupp, and G. Sauzon, “Faster complex
SoC design by virtual prototyping,” in Int’l Conf. on Cybernetics and Informa-
tion Technologies, Systems and Applications (CITSA), 2004, pp. 305-309.

R. M. Stallman, R. Pesch, S. Shebs, et al., Debugging with GDB: The GNU
Source-Level Debugger, 10™". GNU, 2020. [Online]. Available: https : / /
sourceware.org/gdb/current/onlinedocs/gdb.pdf.

R. Willenberg and P. Chow, “Simulation-based HW /SW co-debugging for
field-programmable systems-on-chip,” in Int’l Conf. on Field-Programmable
Logic and Applications (FPL), IEEE, 2013, pp. 1-8.

K. Lee, A. Su, Long-Feng Chen, Jia-Wei Jhou, J. Kuo, and M. Liu, “A
software/hardware co-debug platform for multi-core systems,” in IEEE
Int’l Conf. on ASIC, 2011, pp. 259-262. por: 10 . 1109 / ASICON . 2011 .
6157171.

F. Rogin, C. Genz, R. Drechsler, and S. Riilke, “An integrated SystemC
debugging environment,” in Embedded Systems Specification and Design Lan-

196

https://github.com/tum-ei-eda/etiss
https://github.com/mariusmm/RISC-V-TLM
https://github.com/mariusmm/RISC-V-TLM
https://git.minres.com/VP/HIFIVE1-VP
https://git.minres.com/VP/HIFIVE1-VP
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://www.synopsys.com/verification/virtual-prototyping/virtualizer.html
https://github.com/buserror/simavr
https://github.com/buserror/simavr
https://github.com/lcgamboa/picsimlab
https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
https://doi.org/10.1109/ASICON.2011.6157171
https://doi.org/10.1109/ASICON.2011.6157171

BIBLIOGRAPHY

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

guages, ser. Lecture Notes in Electrical Engineering, vol. 10, Springer, 2008,
pp- 59-71.

D. Grofie, R. Drechsler, L. Linhard, and G. Angst, “Efficient automatic
visualization of SystemC designs,” in FDL, ECSI, 2003, pp. 646—-658.

W. Chen, S. Ray,]. Bhadra, M. Abadir, and L.-C. Wang, “Challenges and
trends in modern SoC design verification,” IEEE Design & Test, vol. 34, no. 5,
pPp- 7-22,2017. por: 10.1109/mdat .2017.2735383.

A. Adamov, K. Mostovaya, 1. Syzonenko, and A. Melnik, “Electronic sys-
tem level models for functional verification of system-on-chip,” in 2007 9th
International Conference - The Experience of Designing and Applications of CAD
Systems in Microelectronics, IEEE, 2007. por: 10.1109/cadsm.2007 .4297576.

S. Rigo, R. Azevedo, and L. Santos, Eds., Electronic System Level Design.
Springer Netherlands, 2011. por: 10.1007/978-1-4020-9940-3.

S. Rigo, B. Albertini, and R. Azevedo, “Transaction level modeling,” in
Electronic System Level Design, Springer Netherlands, 2011, pp. 25-36. por:
10.1007/978-1-4020-9940-3_3.

L. Santos, S. Rigo, R. Azevedo, and G. Araujo, “Electronic system level
design,” in Electronic System Level Design, Springer Netherlands, 2011, pp. 3—-
10. por: 10.1007/978-1-4020-9940-3 1.

ISTQB, Istqb glossary, https : / / glossary . istgb . org/en_US/term/
hardware-in-the-loop-2.

F. Mihali¢, M. Trunti¢, and A. Hren, “Hardware-in-the-loop simulations: A
historical overview of engineering challenges,” Electronics, vol. 11, no. 15,
2022, 1ssN: 2079-9292. por: 10 . 3390 / electronics11152462. [Online].
Available: https://www.mdpi.com/2079-9292/11/15/2462.

P. Nissimagoudar, V. Mane, G. HM, and N. C. Iyer, “Hardware-in-the-loop
(hil) simulation technique for an automotive electronics course,” Procedia
Computer Science, vol. 172, pp. 1047-1052, 2020, 9th World Engineering
Education Forum (WEEF 2019) Proceedings : Disruptive Engineering Ed-
ucation for Sustainable Development, 1ssn: 1877-0509. por: https://doi .
org/10.1016/j .procs.2020.05.153. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877050920314836.

C. Kohler, Enhancing Embedded Systems Simulation. Vieweg+Teubner, 2011.
por: 10.1007/978-3-8348-9916-3.

A. Wy, J.-F. Mao, and X. Zhang, “An adrc-based hardware-in-the-loop
system for maximum power point tracking of a wind power generation
system,” IEEE Access, vol. 8, pp. 226 119-226 130, 2020. por: 10 . 1109 /
ACCESS.2020.3045015.

197

https://doi.org/10.1109/mdat.2017.2735383
https://doi.org/10.1109/cadsm.2007.4297576
https://doi.org/10.1007/978-1-4020-9940-3
https://doi.org/10.1007/978-1-4020-9940-3_3
https://doi.org/10.1007/978-1-4020-9940-3_1
https://glossary.istqb.org/en_US/term/hardware-in-the-loop-2
https://glossary.istqb.org/en_US/term/hardware-in-the-loop-2
https://doi.org/10.3390/electronics11152462
https://www.mdpi.com/2079-9292/11/15/2462
https://doi.org/https://doi.org/10.1016/j.procs.2020.05.153
https://doi.org/https://doi.org/10.1016/j.procs.2020.05.153
https://www.sciencedirect.com/science/article/pii/S1877050920314836
https://www.sciencedirect.com/science/article/pii/S1877050920314836
https://doi.org/10.1007/978-3-8348-9916-3
https://doi.org/10.1109/ACCESS.2020.3045015
https://doi.org/10.1109/ACCESS.2020.3045015

BIBLIOGRAPHY

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Z. Jiang, R. Leonard, R. Dougal, H. Figueroa, and A. Monti, “Processor-in-
the-loop simulation, real-time hardware-in-the-loop testing, and hardware
validation of a digitally-controlled, fuel-cell powered battery-charging sta-
tion,” in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE
Cat. No.04CH37551), IEEE. por: 10.1109/pesc.2004.1355471.

N. Pétrascoiu, A. M. Tomus, E. Angela, and S. Vali, “Creating hardware-in-
the-loop system using virtual instrumentation,” in 2011 12th International
Carpathian Control Conference (ICCC), 2011, pp. 286-291. por: 10 . 1109/
CarpathianCC.2011.5945865.

V. Reyes, Virtual hardware "in-the-loop”: Earlier testing for automative applica-
tions, https://www . synopsys . com/cgi-bin/proto/pdfdla/docsdl/
virtual_hardware_wp.pdf, 2013.

R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simulation
for the design and testing of engine-control systems,” Control Engineering
Practice, vol. 7, no. 5, pp. 643-653, 1999, 1ssn: 0967-0661. por: https://doi.
org/10.1016/50967-0661(98) 00205-6.

H. Szolc and T. Kryjak, “Hardware-in-the-loop simulation of a UAV au-
tonomous landing algorithm implemented in SoC FPGA,” in 2022 Signal
Processing: Algorithms, Architectures, Arrangements, and Applications (SPA),
IEEE, 2022. por: 10.23919/spab3010.2022.9927847.

M. D. Signore, V. Krovi, and F. Mendel, “Virtual prototyping and
hardware-in-the-loop testing for musculoskeletal system analysis,” in IEEE
International Conference Mechatronics and Automation, 2005, IEEE, 2005. por:
10.1109/icma.2005.1626579.

J. Reitz, A. Gugenheimer, and J. Rosmann, “Virtual hardware in the loop:
Hybrid simulation of dynamic systems with a virtualization platform,”
in 2020 Winter Simulation Conference (WSC), IEEE, 2020. por: 10 . 1109 /
wsc48552.2020.9383963.

M. Lukasiewycz, S. Shreejith, and S. A. Fahmy, “System simulation and
optimization using reconfigurable hardware,” in 2014 International Sympo-
sium on Integrated Circuits (ISIC), IEEE, 2014. por: 10.1109/isicir.2014.
7029545.

D. Grofie, M. Grof3, U. Kiithne, and R. Drechsler, “Simulation-based equiva-
lence checking between systemc models at different levels of abstraction,”
in Proceedings of the 21st edition of the great lakes symposium on Great lakes
symposium on VLSI, 2011, pp. 223-228.

N. Bruns, D. Grofle, and R. Drechsler, “Early verification of isa exten-
sion specifications using deep reinforcement learning,” in 30th ACM Great
Lakes Symposium on VLSI (GLSVLSI). ACM Great Lakes Symposium on VLSI
(GLSVLSI-2020), Beijing, China, 2020.

198

https://doi.org/10.1109/pesc.2004.1355471
https://doi.org/10.1109/CarpathianCC.2011.5945865
https://doi.org/10.1109/CarpathianCC.2011.5945865
https://www.synopsys.com/cgi-bin/proto/pdfdla/docsdl/virtual_hardware_wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/docsdl/virtual_hardware_wp.pdf
https://doi.org/https://doi.org/10.1016/S0967-0661(98)00205-6
https://doi.org/https://doi.org/10.1016/S0967-0661(98)00205-6
https://doi.org/10.23919/spa53010.2022.9927847
https://doi.org/10.1109/icma.2005.1626579
https://doi.org/10.1109/wsc48552.2020.9383963
https://doi.org/10.1109/wsc48552.2020.9383963
https://doi.org/10.1109/isicir.2014.7029545
https://doi.org/10.1109/isicir.2014.7029545

BIBLIOGRAPHY

[139]

[140]
[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

M. Goli, J. Stoppe, and R. Drechsler, “Automatic equivalence checking
for systemc-tlm 2.0 models against their formal specifications,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, IEEE,
2017, pp. 630-633.

M. Y. Vardi, “Formal techniques for SystemC verification,” in DAC, 2007.

J. Gladigau et al., “Testfallgenerierung fiir SystemC-Designs mit abstrakten
Modellbeschreibungen,” in Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen, (Berlin), 2009-03-
02/2009-03-04, pp. 157-166.

A. Habibi and S. Tahar, “Design and verification of systemc transaction-
level models,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 14, no. 1, pp. 57-68, 2006. por: 10.1109/TVLSI.2005.863187.

C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic model check-
ing on systemc designs,” in DAC Design Automation Conference 2012, 2012,
pp- 327-333.

A. Fin, F. Fummi, and D. Signoretto, “The use of systemc for design
verification and integration test of ip-cores,” in Proceedings 14th Annual
IEEE International ASIC/SOC Conference (IEEE Cat. No.01THS8558), 2001,
pp- 76-80. por: 10.1109/ASIC.2001 .954676.

C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’08, San Diego, California, 2008, pp. 209-224.

D. Karlsson, P. Eles, and Z. Peng, “Formal verification of systemc designs
using a petri-net based representation,” in Proceedings of the Design Automa-
tion & Test in Europe Conference, vol. 1, 2006, pp. 1-6. por: 10. 1109 /DATE .
2006.244076.

M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Lussy: An open tool for
the analysis of systems-on-a-chip at the transaction level,” ACSD, vol. 10,
no. 2-3, pp. 73-104, 2005.

D. Karlsson, P. Eles, and Z. Peng, “Formal verification of systemc designs
using a petri-net based representation,” in DATE, 2006, pp. 1228-1233.

C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi, “A SystemC/TLM
semantics in promela and its possible applications,” in SPIN, 2007, pp. 204—
222

P. Herber,]J. Fellmuth, and S. Glesner, “Model checking SystemC designs
using timed automata,” in CODES+ISSS, 2008, pp. 131-136.

D. Kroening and N. Sharygina, “Formal verification of SystemC by auto-
matic hardware/software partitioning,” in MEMOCODE, 2005.

199

https://doi.org/10.1109/TVLSI.2005.863187
https://doi.org/10.1109/ASIC.2001.954676
https://doi.org/10.1109/DATE.2006.244076
https://doi.org/10.1109/DATE.2006.244076

BIBLIOGRAPHY

[152]

[153]
[154]
[155]

[156]

[157]
[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

D. Grofse, H. M. Le, and R. Drechsler, “Proving transaction and system-
level properties of untimed SystemC TLM designs,” in MEMOCODE, 2010,
pp. 113-122.

D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman, “A temporal language
for SystemC,” in FMCAD, 2008, pp. 1-9.

C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang, “Symbolic model check-
ing on SystemC designs,” in DAC, 2012, pp. 327-333.

C. Chou, C. Chu, and C. Huang, “Conquering the scheduling alternative
explosion problem of SystemC symbolic simulation,” in ICCAD, 2013.

V. Herdt, H. M. Le, D. Grofle, and R. Drechsler, “Verifying SystemC using
intermediate verification language and stateful symbolic simulation,” IEEE
Transactions on Computer Aided Design of Circuits and Systems, vol. 38, no. 7,
pp- 1359-1372, 2019.

V. Herdt, H. M. Le, D. Grofle, and R. Drechsler, “Compiled symbolic
simulation for SystemC,” in ICCAD, 2016, 52:1-52:8.

P. Herber, M. Pockrandt, and S. Glesner, “State — a SystemC to timed
automata transformation engine,” in HPCC-CSS-ICESS, 2015.

M. Pockrandt, P. Herber, and S. Glesner, “Model checking a SystemC/TLM
design of the AMBA AHB protocol,” in 2011 9th IEEE Symposium on Embed-
ded Systems for Real-Time Multimedia, 2011, pp. 66-75.

P. Herber, M. Pockrandt, and S. Glesner, “Transforming SystemC Trans-
action Level Models into UPPAAL timed automata,” in Ninth ACM/IEEE
MEMPCODE 2011, 2011, pp. 161-170.

T. Liebrenz, V. Klos, and P. Herber, “Automatic analysis and abstraction
for model checking HW/SW co-designs modeled in SystemC,” Ada Lett.,
vol. 36, no. 2, pp. 9-17, 2017-05.

H. M. Le, V. Herdt, D. GrofSe, and R. Drechsler, “Towards formal verifica-
tion of real-world SystemC TLM peripheral models - a case study,” in 2016
DATE, 2016, pp. 1160-1163.

B. Lin, Z. Yang, K. Cong, and F. Xie, “Generating high coverage tests for
systemc designs using symbolic execution,” in 2016 21st ASP-DAC, 2016,
pp. 166-171. por: 10.1109/ASPDAC. 2016 . 7428006.

P. Coussy, A. Takach, M. McNamara, and M. Meredith, “An introduction
to the systemc synthesis subset standard,” 2010-10, pp. 183-184. por: 10 .
1145/1878961.1878993.

A. Chang et al. (2023), [Online]. Available: https://github.com/riscv/
riscv-plic-spec/blob/master/riscv-plic.adoc (visited on 2022-04).

200

https://doi.org/10.1109/ASPDAC.2016.7428006
https://doi.org/10.1145/1878961.1878993
https://doi.org/10.1145/1878961.1878993
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc

BIBLIOGRAPHY

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]
[175]
[176]

[177]

[178]

[179]

N. Bombieri, F. Fummi, and G. Pravadelli, “Rtl-tlm equivalence checking
based on simulation,” in Proceedings of IEEE East-West Design & Test Sympo-
sium (EWDTS’08), 2008, pp. 214-217. por: 10.1109/EWDTS.2008.5580149.

“Verilator compiler.” (2004), [Online]. Available: https://www.veripool.
org/verilator/ (visited on 2022-04).

D. Currie, X. Feng, M. Fujita, A. Hu, M. Kwan, and S. Rajan, “Embedded
software verification using symbolic execution and uninterpreted func-
tions,” International Journal of Parallel Programming, vol. 34, pp. 61-91, 2006-
03. por: 10.1007/s10766-005-0004-8.

T. Li, J. Ye, and Q. Tan, “Towards functional verifying a family of systemc
tlms,” Frontiers of Computer Science, vol. 14, 2019-03. por: 10.1007/s11704-
018-8254-7.

V. Herdt, H. M. Le, D. Grofse, and R. Drechsler, “Compiled symbolic simu-
lation for systemc,” in 2016 IEEE / ACM International Conference on Computer-
Aided Design (ICCAD), 2016, pp. 1-8. por: 10.1145/2966986 . 2967016.

S. Ahmadi-Pour and V. Herdt. “Microrv32 - github.” (2022), [Online].
Available: https://github.com/agra-uni-bremen/microrv32 (visited
on 2023-03).

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program execu-
tion via dynamic information flow tracking,” in Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, 2004, pp. 85-96.

D. Hedin and A. Sabelfeld, “A perspective on information-flow control,” in
Software Safety and Security - Tools for Analysis and Verification, 2012, pp. 319-
347.

D. E. Robling Denning, Cryptography and Data Security. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1982, 1sen: 0-201-10150-5.

Automotive Working Group, Automotive virtual prototyping platform (white
paper), edacentrum, 2019.

C.Songet al., “Hdfi: Hardware-assisted data-flow isolation,” in Security and
Privacy, 2016.

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. P. Carloni, “Design and
implementation of a dynamic information flow tracking architecture to
secure a RISC-V core for iot applications,” in 2018 IEEE HPEC, 2018-09.

M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information
flow architecture for software security,” in ISCA, 2007, pp. 482—-493.

H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic informa-
tion flow tracking with a dedicated coprocessor,” in DSN, 2009, pp. 105-
114.

201

https://doi.org/10.1109/EWDTS.2008.5580149
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://doi.org/10.1007/s10766-005-0004-8
https://doi.org/10.1007/s11704-018-8254-y
https://doi.org/10.1007/s11704-018-8254-y
https://doi.org/10.1145/2966986.2967016
https://github.com/agra-uni-bremen/microrv32

BIBLIOGRAPHY

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]
[190]

[191]

[192]

[193]

L. Piccolboni, G. Di Guglielmo, and L. P. Carloni, “Pagurus: Low-overhead
dynamic information flow tracking on loosely coupled accelerators,” IEEE
TCSDI, 2018.

J. Porquet and S. Sethumadhavan, “Whisk: An uncore architecture for
dynamic information flow tracking in heterogeneous embedded socs,” in

ISSS, 2013.

C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni, “Tainthls: High-level
synthesis for dynamic information flow tracking,” IEEE Transactions on
Computer Aided Design of Circuits and Systems, pp. 798-808, 2019.

A. Ardeshiricham, W. Hu,]J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Design, Automation and Test in Europe, 2017.

M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and T.
Sherwood, “Complete information flow tracking from the gates up,” in
Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems, 2009.

L. C. Lam and T. Chiueh, “A general dynamic information flow tracking
framework for security applications,” in ACSAC, 2006, pp. 463—472.

F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “Lift: A low-overhead
practical information flow tracking system for detecting security attacks,”
in MICRO, 2006.

J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in ISSTA, 2007, pp. 196-206.

P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. M. Fung, “Verifying
information flow properties of firmware using symbolic execution,” in
Design, Automation and Test in Europe, 2016.

W. Yang, Y. Vizel, P. Subramanyan, A. Gupta, and S. Malik, “Lazy self-
composition for security verification,” in CAV, 2018.

A. Danese, V. Bertacco, and G. Pravadelli, “Symbolic assertion mining for
security validation,” in DATE, 2018, pp. 1550-1555.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Capturing
system-wide information flow for malware detection and analysis,” in CCS,
2007.

M. Hassan, V. Herdt, H. M. Le, D. Grofse, and R. Drechsler, “Early SoC se-
curity validation by VP-based static information flow analysis,” in ICCAD,
2017, pp. 400-407.

M. Goli, M. Hassan, D. Grofle, and R. Drechsler, “Security validation of
VP-based SoCs using dynamic information flow tracking,” it-Information
Technology, vol. 61, no. 1, pp. 45-58, 2019.

202

BIBLIOGRAPHY

[194]

[195]

[196]

[197]

[198]

[199]

[200]

A. Sabelfeld and D. Sands, “Declassification: Dimensions and principles,”
Journal of Computer Security, vol. 17, no. 5, pp. 517-548, 2009.

H. Mantel and D. Sands, “Controlled Declassification based on Intransitive
Noninterference,” in Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2004, pp. 129-145.

R. Denning and D. Elizabeth, Cryptography and Data Security. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1982, 1sen: 0-201-
10150-5.

J. Wilander and M. Kamkar, “A comparison of publicly available tools for
dynamic buffer overflow prevention,” in NDSS, 2003.

V. Herdt, D. Grole, H. M. Le, and R. Drechsler, “Early concolic testing
of embedded binaries with virtual prototypes: A RISC-V case study,” in
Design Automation Conf., 2019, 188:1-188:6.

S. Tempel, V. Herdt, and R. Drechsler, “SymEx-VP: An open source virtual
prototype for os-agnostic concolic testing of iot firmware,” Journal of Systems
Architecture, vol. 126, p. 102456, 2022, 1ssn: 1383-7621. por: https://doi.
org/10.1016/j.sysarc.2022.102456. [Online]. Available: https: //www.
sciencedirect.com/science/article/pii/S1383762122000480.

N. Stephens et al., “Driller: Augmenting fuzzing through selective symbolic
execution,” 2016.

203

https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102456
https://www.sciencedirect.com/science/article/pii/S1383762122000480
https://www.sciencedirect.com/science/article/pii/S1383762122000480

	1 Introduction
	1.1 Design Flow with Virtual Prototypes
	1.2 Thesis Contribution
	1.3 Thesis Organization

	2 Preliminaries
	2.1 Embedded Devices
	2.2 SystemC / TLM
	2.3 RISC-V Instruction Set Architecture

	3 Hardware and Environment Modeling
	3.1 RISC-V based Virtual Prototype: An Extensible and Configurable Platform for the System-level
	3.1.1 Introduction
	3.1.2 Related Work
	3.1.3 Preliminaries
	3.1.3.1 RISC-V: Atomic Instruction Set Extension

	3.1.4 RISC-V based VP Architecture
	3.1.4.1 RV32/64 (Multi-)Core
	3.1.4.2 TLM-2.0 Bus
	3.1.4.3 Traps and Interrupts
	3.1.4.4 System Calls
	3.1.4.5 VP Initialization
	3.1.4.6 Timing Model

	3.1.5 VP Interaction with SW and Environment
	3.1.5.1 Interrupt Handling and HW/SW Interaction
	3.1.5.2 Environment Interaction: Syscall Emulation and C/C++ Library

	3.1.6 VP Performance Optimizations
	3.1.6.1 Direct Memory Interface (DMI)
	3.1.6.2 Local Time Quanta

	3.1.7 Simulation of Multi-Core Platforms
	3.1.7.1 Example Bare-Metal Multi-Core SW
	3.1.7.2 Implementation of the Atomic ISA Extension

	3.1.8 VP Extension and Configuration
	3.1.8.1 Extending the VP with a Sensor Peripheral
	3.1.8.2 SW Debugging Support Extension
	3.1.8.3 HiFive1 Board Configuration

	3.1.9 VP Evaluation
	3.1.9.1 Testing
	3.1.9.2 Performance Evaluation

	3.1.10 Discussion and Future Work
	3.1.11 Conclusion

	3.2 Virtual Breadboard - Advanced Environment Modeling GUI
	3.2.1 Introduction
	3.2.2 Related Work
	3.2.3 Embedded Systems: Components and Interfaces
	3.2.4 VP-driven Environment Modeling
	3.2.4.1 Architecture Overview
	3.2.4.2 VP Peripheral Interfaces
	3.2.4.3 SystemC Peripheral Interface
	3.2.4.4 GPIO-Protocol
	3.2.4.5 VP Environment Model
	3.2.4.6 Drag and Drop

	3.2.5 Rapid Prototyping using Lua Scripting
	3.2.5.1 Configuration
	3.2.5.2 Scoping layers
	3.2.5.3 Example Devices

	3.2.6 Evaluation
	3.2.6.1 Modeling Case-Studies
	3.2.6.2 Performance Evaluation
	3.2.6.3 Educational Tool for Teaching

	3.2.7 Discussion and Future Work
	3.2.8 Conclusion

	3.3 Minimally Invasive SW/HW Co-debug Live Visualization on Architecture Level
	3.3.1 Introduction
	3.3.2 Related Work
	3.3.3 Preliminaries
	3.3.4 Implementation
	3.3.4.1 Symbols and Connections
	3.3.4.2 Visualization Interface
	3.3.4.3 Debugging GUI

	3.3.5 Case Study
	3.3.5.1 Display HW Model
	3.3.5.2 Display SW Driver
	3.3.5.3 Debugging
	3.3.5.4 Evaluation

	3.3.6 Conclusion and Future Work

	3.4 Hardware-In-The-Loop Framework to Bridge the *vp/*rtl Design-Gap
	3.4.1 Introduction
	3.4.2 Related Work
	3.4.3 Approach Overview
	3.4.3.1 Protocol
	3.4.3.2 Peripheral Bridge
	3.4.3.3 FPGA Implementation

	3.4.4 Evaluation / Case-Study
	3.4.4.1 GPIO Bank
	3.4.4.2 GPIO Bit-Banging SPI
	3.4.4.3 GCD Calculation
	3.4.4.4 Synthesis Results

	3.4.5 Discussion
	3.4.6 Conclusion and Future Work

	4 Verification
	4.1 Verifying SystemC TLM Peripherals using Modern C++ Symbolic Execution Tools
	4.1.1 Introduction
	4.1.2 Related Work
	4.1.3 Preliminaries - PLIC
	4.1.4 TLM Peripheral Verification via Symbolic Execution
	4.1.4.1 Overview
	4.1.4.2 Thread to Function Translation
	4.1.4.3 Peripheral Kernel
	4.1.4.4 Symbolic Execution

	4.1.5 Experiments
	4.1.5.1 Tests
	4.1.5.2 Test Results: Original PLIC
	4.1.5.3 Test Results: PLIC with Injected Faults
	4.1.5.4 Test Appendix: Simple Sensor Peripheral

	4.1.6 Conclusion

	4.2 Towards Cross-Level Equivalence Testing of Peripherals using Symbolic Execution Tools
	4.2.1 Introduction
	4.2.2 RTL Peripheral Verification via Symbolic Execution
	4.2.2.1 Peripheral Kernel

	4.2.3 Experimental Setup
	4.2.4 Conclusion and Future Work

	4.3 Dynamic Information Flow Tracking for Early Security Policy Validation
	4.3.1 Introduction
	4.3.2 Related Work
	4.3.3 Preliminaries: Security Policies and Threat Model
	4.3.3.1 Security Policy
	4.3.3.2 Declassification
	4.3.3.3 Threat Model

	4.3.4 DIFT for Embedded Binaries using VPs
	4.3.4.1 Approach Overview
	4.3.4.2 DIFT Engine
	4.3.4.3 Execution Clearance
	4.3.4.4 Example Scenario: System Description and Security Policy
	4.3.4.5 Branches with Confidential Conditions

	4.3.5 SystemC TLM-2.0 Compatible Tainting Engine for Virtual Prototypes
	4.3.6 Experimental Evaluation
	4.3.6.1 Security Policy Evaluation: Car Engine Immobilizer
	4.3.6.2 Code Injection Protection
	4.3.6.3 Performance Overhead Evaluation

	4.3.7 Conclusion and Future Work

	5 Conclusion
	Acronyms
	List of Figures
	List of Tables

